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Random Walk on Graph

Page Rank Algorithm



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Label Propagation on Graph

I Assume a strongly connected graph G = (V ,A)

I V: set of nodes

I A: adjacency matrix

I Two type of nodes: labeled and unlabeled

I Label is either +1 or -1

I Gaol: assign a label to unlabeled nodes.



Random Walk for Label Propagation

I Random Walk on Graph: we jump from one node to another
one with some probability

I Label propagation algorithm

I start from an unlabeled node v
I do k times random walk starting from v and store the output

labels
I do majority vote among the stored labels
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Random Walk for Label Propagation

Random Walk Algorithm

I repeat until you find a label

I let v be the node you are in and has dv neighbours

I if v is unlabeled, with uniform probability 1
dv

pick one of its
neighbours and jump to that node

I if v is labeled

I with probability 1
dv+1 output its label

I with uniform probability 1
dv+1 pick one of its neighbours jump

to that node
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Random Walk Algorithm

I repeat until you find a label

I let v be the node you are in and has dv neighbours
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dv

pick one of its
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Exercise

Assume we are given adjacency matrix, a labelList, a matrix where
the first column contains node numbers and the second column
contains class labels and starting node, write code for random walk
algorithm.



RW code



Ranking Problem

I The ranking problem:
I Input: a large set of objects (and possibly a query object).
I Output option 1: score of each object (and possibly for query).
I Output option 2: ordered list of most relevant objects

(possibly for query).

I Examples:
I Country comparisons (Global Hunger Index)
I Academic journals (Impact factor).
I Sports/gaming (Elo and TrueSkill)
I Internet search engines
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PageRank

I Goal: ranking webpages based on some score or weight

I Assuming that we have n webpages and let the score of
webpage i be pi , and P = (pi ) be a vector of size n

I Make the directed webpage graph G
I node i has an edge into node j if there is a link from page i to

j i.e. i → j .
I Assume this graph is strongly connected and aperiodic and

does not have absorbing node

I Let mj be the number of outgoing edges from node j and
m = (mj) be a vector of size n

I Let A be the adjacency matrix for G i.e. Aij = 1 if i → j o.w.
Aij = 0

I Let Z = AT (diag(m))−1

I (Z )ij : probability of jumping from page j to page i via a link
I But we can go directly from page j to i by entering the

address of page i in the address-bar of browser
I add some small amount to all (Z )ij and normalize!
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PageRank

I For some d ∈ (0, 1) let E = ones(n, n) and T = 1−d
n E + dZ

I Now with transition matrix T for a webpage graph G , we have

P = TP

I Each pi is a probability, so
∑n

i=1 pi = 1

I With two above equations, we can find all pi s by solving
corresponding linear system
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PageRank: Exercise

Let d = 3
4 . For the following webpage graph, find A, m, Z and T .

Then make the linear system and solve it and find P.



PageRank: Solution

m =


2
2
2
2

A =


0 0 1 1
1 0 1 0
0 1 0 1
1 1 0 0

Z =


0 1

2 0 1
2

0 0 1
2

1
2

1
2

1
2 0 0

1
2 0 1

2 0



T =
1

16
∗


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 +
3

4
∗ Z =


1
16

7
16

1
16

7
16

1
16

1
16

7
16

7
16

7
16

7
16

1
16

1
16

7
16

1
16

7
16

1
16


P = TP → (T − I )P = 0 (I is Identity matrix)

4∑
i=1

pi = 1



PageRank: Solution

Combining two equations, we get
1
16

7
16

1
16

7
16

1
16

1
16

7
16

7
16

7
16

7
16

1
16

1
16

7
16

1
16

7
16

1
16

1 1 1 1

 ∗

p1
p2
p3
p4

 =


0
0
0
0
1



P =


0.25
0.25
0.25
0.25
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