Tutorial 10

CPSC 340: Machine Learning and Data Mining

Fall 2016

1/20

Overview

o Principal Component Analysis
@ Singular Value Decomposition (SVD)
@ Non-Negative Matrix Factorization (NMF)

o Collaborative Filtering

2/20

Principal Component Analysis (PCA)

n d
2) = 5 33 (wln - xy)” = 5 1ZW — X
i=1 j=1
Tw]
n - d
n
d k

@ Can apply different constrains on W and Z, e.g.,:
Orthogonal W.

Non-negative W and Z (consequently sparse) .
L1-regularization on W and Z (consequently sparse).

3/20

Solving PCA

@ 3 common ways to solve this problem:

e Singular value decomposition (SVD)classic non-iterative approach.

o Alternating between updating W and updating Z.
e Stochastic gradient: gradient descent based on random 7 and ;.

@ (Or just plain gradient descent).

a4/20

@ At train: enforce orthogonality on W with SVD.
@ At test:
Vzf(Z)=ZWWT - XWT 5 Z = XWT(WWT)~! = XW7T

function [model] = dimRedPCA (X, k)
[n,d] = =ize(X):
% Subtract

mu = mean (X)

X = X - repmat (mu, [n 1]);
[U,5,V] = avd(X);

W= Vi, 1l:k)';

model.mu = mu;

model.W = W;

model.compress = Bcompress;
model.expand = @expand;

end

function [Z] = compress (model,X)
[t,d] = =ize(X):

mu = model.mu;

W = model.W;

X = X - repmat (mu, [t 11);

Z = XA

end

function [X] = expand(model,Z)
[t,d] = =ize(Z):

mu = model.mu:

W = model.W:

X = Z*W + repmat(mu, [t 1]);
end

5/20

Solving PCA: Alternating between Updating W and

Updating Z

@ Instead of using SVD to compute the principal components, we
can alternate between updatingW and updating Z.
e One way is to use a gradient method that alternates between
updating W and Z.

@ We get different principal components with gradient descent because
we haven't set constraints on W.

@ You would never actually use this method to fit a PCA model, but this
optimization strategy generalizes to other models e.g., non-negative
matrix factorization (NMF).

6/20

Solving PCA: Alternating between Updating W and

Updating Z

@ Fix Z, find W:
Ywf(W)=2ZT"ZW - ZTX W = (Z7Z)"1(Z"X)
@ Fix W, find Z:

Vzf(Z)=ZWWT - XWT 7 = XWT(WwWT)~!

7/20

Solving PCA: Alternating between Updating W and

Updating Z

function [model] = dimRedPCA_alternate (X, k)
[n,d] = size(X):

% Subtract mean

mu = mean(X);

X = X - repmat (mu, [n 1]):

% Inivialize W and Z
W = randn(k,d):

Z = randn(n,X);
£

£

(1/2) *sum (sum ((X-Z*W) ."2));
or iter = 1:50

£o1d = £:

Z(:) = findMin(@funObjZ,Z(:),10,0,X,W};
W(:) = findMin (@FunObiW,W(:),10,0,X,2);
£ = (1/2)*sum(sum((X-2*W) .~2));

fprintf (' Iteration
if £0ld - £ < 1
brea

%d, loss = %.5en’,iter,f);

end
end
model.ma = mu; model.W = W mpdel.compress = compress; model.expand = @expand:
end
function [Z] = compress (model,X)
[t,d] = size(X);
model.mu;
= model.W:
X = X - repmat (mu, [t 1]):
% We dis
Z = XAW'*inv (H*H') 5
end
function [X] = expand(model,Z)

enfor,

ogonal so we need to solve least squares

It,d] = size(2):

mu = model.mu;

W = model.W;

X = Z*W + repmat (mu, [t 1]);

Solving PCA: Alternating between Updating W and

Updating Z

function [f,g] = funCbiW(W,X,Z)

Resize vector of parameters into matrix
= size(X,2):

= size(Z,2);

= reshape (W, [k d]);

Compute function and gradient

= X-Z*W;

= (1/2)*sum(sum(R."2))

o owa MW oW = R R W

il
=)
o

function [£,g] = funCbiZ(Z,X,W)
% Resize vector of parameters into matrix

n = size(X,1);

k = size(W,1);

Z = reshape(Z,[n k]):

% Compute function and gradient
R = X-Z*W;

£ = (1/2)*sum(sum(R."2))

g = —(R*W');

% F

o

9/20

Non-Negative Matrix Factorization (NMF)

@ NMF is solving PCA such that Z and W have non-negative
terms.
@ How can we minimize f(W) with non-negative constraints?
e Naive approach: solve least squares, set negative w;; to 0, e.g.,

W = (z2"2)""(2"X)

wi; = max{0, wij }

o Generally not correct!

10/20

Non-Negative Matrix Factorization (NMF)

@ How can we minimize f(W) with non-negative constraints?
e Correct approach: projected gradient descent.

@ Run a gradient descent iteration:
wits — wl — aTvf(W?)
@ After each step, set negative values to 0.
wi; T = max{0, wi;}
@ Repeat.
@ One way to use projected gradient:
o Alternate between projected gradient steps on W and on Z.

11/20

Exercise

@ Modify the dimRedPCA _alternate function from the previous
slides, to add non-negativity constraint.

e Hint: you may use findMinNN as a black box that implements
gradient descent and enforces non-negative parameters!

12/20

Exercise: Solution

[function [model] = dimRedNMF szlternate(X,k|
[n,d] = sizelX);

% Subtract mean
mu = mean(X);
X = X - repmat(mu,[n 1]);

* itialize W and Z
W = randn(k,d);
Z = randn(n,k);
(W< 0) = 0;
Z(Z € 0) = 0;
£ = (1/2)*sun{sun((X-E*W)."2)};
for iter = 1:50
fold = f;
% Update 2
Z(:) = findMinNN(8fun0b3Z,2(:),10,0,%,W);
% Update W
W(:) = findMinNN(8funObiW,W(:),10,0,%,2);
f= (1/2*sun(sum((x ~I*W)."2));
fprintf(Iteration #d, loss = %.5e\n',iter,f);
if abs(fold - £) < 1
break;
end
end
model.mu = mu; model.W = W model.compress = @compress; model.expand = @expand
end

function [Z] = compress(model,X)
[L d] = size(X);
size(model.W,1);

mu = model.mu;

W = model.W;

X = X - repmat(mu,[t 1]);

Z = zeros(t,k):

2(:) = findMinNN(@funObiZ,Z(:),500,0,%,W);
end

13/20

Collaborative Filtering

@ Given a user-item interaction matrix
e Each cell can be rating of user u for item 4
o A large number of missing values!!!
@ In collaborative filtering, we are interested in filling in, or
predicting, the missing values.

%

Y = e

14/20

Collaborative Filtering

@ Our standard latent-factor framework:

n d
1 T 92
ar‘;%glng E E (yij — w; 2;)

i=1 j=1

Lw |
Y =

15/20

Collaborative Filtering

@ Our standard latent-factor framework'

argmln - Z Z Yij — Wi z;)

lel

Lw |
Y =

@ But don'’t include missing entries in loss:

argmm ZZI yi; #N(yij — WTZz)2

15/20

Collaborative Filtering

@ Can predict missing rating for user ¢ and item j:

U
Yij = W; Z;

16/20

Collaborative Filtering

@ Can predict missing rating for user ¢ and item j:
Yii = W) 2
@ Can add user bias b; and item bias b.

$ij =W, zi+b; +b;

e High b; means user i rates higher than average.
e High b; means j is rated higher than average.

16/20

Exercise

1
f(buabmvwmazu) = §(Yum - (szu +b, + bm))2

Using the notation #um = (Yum — (by + b + w3l %,)), derive the partial derivative of this expression with
respect to (i) by, (i) b, (i) (wnm); for a particular element ¢ of wa., and (iv) (z.); for a particular element
i of z,.

of _,
ob,
o,
ob,,
of
a(Wm)l o
of
INzy)i

17/20

Exercise: Solution

1
f(buabmvwmazu) = §(Yum - (szu +b, + bm))2

Using the notation #um = (Yum — (by + b + w3l %,)), derive the partial derivative of this expression with
respect to (i) by, (i) b, (i) (wnm); for a particular element ¢ of wa., and (iv) (z.); for a particular element
i of z,.

of
b, | um
of

Tby, e

_of

a(Wm)z = —TumZui
_or
8(Wm)z umWmi

18/20

Exercise

@ Using the previous question,complete the following function with
gradient descent.

function [model] = recommendSVD (X,y,k)
ax(X(:,2)); mRatings = size(X,1);

ges % - for

2z = .00001%zandn (n, k) ;

X Y

= sublModel.bm/2; W = .00001+randn(k,d);

gm = zeros(d,1);
oW = zeros (k,d); R: 2

- zeros(n,x); tings™ !
LTI rrenes nRatings*1

raving based on current model
yhat = bu(a) + Dmgm + W(,m eZ(a) 0

Add gradient of this prediction to overall gradient
end ?
Take a small step in the negative gradient direction N0 N\

User id Movie id Movie ratings

yhat = bu(u) + bm(m) + W(:,m)'*Z(a,1) s
£= £+ (1/2)%(y(2) - yhat)"2:
end
ena
model.bu = bu; model.bm = bm; model.W = W; model.Z = Z; model.predict = @predict;

ena

19/20

Exercise: Solution

function [model] = recommendSVD(X,y,k)

n o= max(X(:,1)); d = max(X(:,2))7 nRatings = size(X,1);
%I e parameters

% - for the biases, we'll use the user/item averages % - for the lat
subModel = recommendUserItemMean(X,y);

bu = subModel.bu/2; bm = subModel.bm/2; W =
maxTter = 10;

alpha = le-4;

ent factors, randem

.00001%randn (k,d); Z = .00001%randn(n k);

for iter = limaxIter

% Compute gradie:
gu = zerosi(n,1);
om = zeros(d,1):
o = zeros(k,d);
gz = zerosi(n, k)

for i
5 n model
u = X(i,1):
m = X(1,2);
yhat = bu(u) + bm(m)

% 2dd gradie

r = y(i)-yhat;

guiw) = gu(u) - =
gnim) = gn(m) - r;
QW(:,m) = QW(:,m) - r*Z(g,:)’;
gZ(y,:) = oZ(a,:) - TFW(:,m)
end
% Take 2 small scep in cgative

bu = bu - alpha*gu;
bm = bm - alpha*gm;
W = W - alpha*gil;
Z = Z - alpha*gZ;
Compute and ©

yhat = bu(u) + bmim) + W(:,m)'*Z(g,:
£= £+ (1/2)%(y(i) - yhat)"2;

end

model.bu = bu; model.bm = bm; model.W
end

nodel.z = Z.

model.predict = Epredict;

20/20

	Principal Component Analysis
	Singular Value Decomposition (SVD)
	Non-Negative Matrix Factorization (NMF)

	Collaborative Filtering

