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Admin

* Welcome to the course!
— You should know if you are officially in/out.

* Assignment 1 is due Friday.
— Setup your CS undergrad account ASAP to use Handin:

* https://www.cs.ubc.ca/getacct

— Instructions for handin posted to Piazza.

— 1 late day to hand it in before Monday’s class.

— 2 late days to hand it in before Wednesday’s class.
— 3 late days to hand it in before Friday of next week’s class.
— 0O after that.


https://www.cs.ubc.ca/getacct

K-Nearest Neighbours (KNN)

K-nearest neighbours algorithm for classifying x":
— Find ‘k’ values of x; that are most similar to x.

— Use mode of corresponding vy..

Non-parametric:
— Size of model grows with ‘n’
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Consistency:

— Nearly-optimal test error with infinite data.

But how many examples are needed?
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Curse of Dimensionality

* “Curse of dimensionality”: problems with high-dimensional spaces.
— Volume of space grows exponentially with dimension.
— Need exponentially more points to “fill’ a high-dimensional volume.
— Distances become less meaningful:

* All vectors may have similar distances.

— Emergence of “hubs”:

* some datapoints are neighbours to many more points than average.

* KNN is also problematic if features have different scales.

* Nevertheless, KNN is really easy to use and often hard to beat!



Application: Optical Character Recognition

* We have collection of letter/digit images, and corresponding labels:
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* Use supervised learning to automatically recognize letters/digits:
— y. could be the letter/digit, x. could be the values of the pixels.




KNN for Optical Character Recognition
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KNN for Optical Character Recognition
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KNN for Optical Character Recognition




KNN for Optical Character Recognition




Human vs. Machine Perception

* There is huge difference between what we see and what KNN sees:

What we see: What the computer “sees”:  Actually, it’s worse:
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What the Computer Sees

* Are these two images ‘similar’?




What the Computer Sees

* Are these two images ‘similar’? .
Difference:
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e KNN does not know that labels should be translation invariant.



Encouraging Invariance

 May want classifier to be invariant to certain feature transforms.
— Digits: translations, small rotations, changes in size, mild warping,...

* The hard/slow way is to modify your distance function:
— Find neighbours that require the ‘smallest’ transformation of image.

* The easy/fast way is to just add transformed data during training:
— Add translated/rotate/resized/warped versions of training images.
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— Crucial part of many successful vision systems.




Decision Trees vs. Naive Bayes vs. KNN
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Application: Body-Part Recognition

* Microsoft Kinect:
— Real-time recognition of 31 body parts from laser depth data.

 How could we write a program to do this?



Some Ingredients of Kinect

1. Collect hundreds of thousands of labeled images (motion capture).
— Variety of pose, age, shape, clothing, and crop.
2. Build a simulator that fills space of images by making even more images.
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3. Extract features of each location, that are cheap enough for real-time
calculation (depth differences between pixel and pixels nearby:.)

4. Treat classifying body part of a pixel as a supervised learning problem.
5. Run classifier in parallel on all pixels using graphical processing unit (GPU).

synthetlc (traln & test)
real (test)




Supervised Learning Step

* ALL steps are important, but we’ll focus on the learning step.

Do we have any classifiers that are accurate and run in real time?
— Decision trees and naive Bayes are fast, but often not very accurate.
— KNN is often accurate, but not very fast.

* Deployed system uses an ensemble method called random forests.



Ensemble Methods

 Ensemble methods are classifiers that have classifiers as input.
— Also called “meta-learning”.

 They have the best names:
— Averaging.
— Boosting.
— Bootstrapping.
— Bagging.
— Cascading.
— Random Forests.
— Stacking.

* Meta-classifier often have higher accuracy than input classifiers.



Ensemble Methods

e Remember the fundamental trade-off:

1. How small you can make the training error.
VS.

2. How well training error approximates the test error.

* Goal of ensemble methods is that meta-classifier:
— Does much better on one of these than individual classifiers.
— Doesn’t do too much worse on the other.

* This (roughly) gives two types:

1. Boosting: take simple classifier that underfits, improve its training error.
2. Averaging: take complex classifier that overfits, improve its test error.



Boosting

Input to boosting is classifier that:
— |s simple enough that it doesn’t overfit much.
— Can obtain >50% weighted training accuracy.

Example: decision stumps or low-depth decision trees.
Basic steps:

1. Fit a classifier on the training data.

2. Give a higher weight to examples that the classifier got wrong.

3. Fit a classifier on the weighted training data.
4. Go backto 2.

Final prediction: weighted vote of individual classifier predictions.
Boosted decision trees are very fast/accurate classifiers.



Averaging

* |nput to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.

* Simple model averaging:
— Take the mode of the predictions (or average if probabilistic).
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Averaging

* |nput to averaging is the predictions of a set of models:
— Decision trees make one prediction.
— Naive Bayes makes another prediction.
— KNN makes another prediction.
* Simple model averaging:
— Take the mode of the predictions (or average if probabilistic).
e Stacking:

— Fit another classifier that uses the predlctlons as features.
/)
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Averaging

Averaging often performs better than individual models:
— Averaging typically used by Kaggle winners.
— E.g., Netflix S1M user-rating competition winner was stacked classifier.

Why does this work?
Consider a set of classifiers that tend to overfit:

— For example, deep decision trees.
If they all overfit in exactly the same way, averaging does nothing.
But if they make independent errors:

— Probability of error of average can be lower than individual classifiers.

Less attention on specific overfitting of each classifier.



Random Forests

 Random forests average a set of deep decision trees.

— Tend to be one of the best ‘out of the box’ classifiers.
e Often close to the best performance of any method on the first run.

— And predictions are very fast.

* Do deep decision trees make independent errors?
— If just fit a decision tree repeatedly to same data, all trees will be the same.

* Two key ingredients in random forests:
— Bootstrap aggregation.
— Random trees.



Random Forest Ingredient 1: Bagging

e Bootstrap sample of a list of ‘'n’ objects:
— A set of ‘'n’ objects, chosen independently with replacement.
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— Gives new dataset of ‘n’ objects, with some duplicated and some missing.
* ~63% of original objects will be included.

— Usually, it is used to estimate how sensitive a statistic is to the data.
* Bootstrap aggregation (bagging):
— Generate several bootstrap samples of the objects (x,Y,).

— Fit a classifier to each bootstrap sample.
— At test time, average the predictions.
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Random Forest Ingredient 2: Random Trees

 When fitting each decision stump to construct deep decision tree:
— Do not consider all features when searching for the optimal rule.
— Each split only considers a small number of randomly-chosen features.
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Random Forest Ingredient 2: Random Trees

 When fitting each decision stump to construct deep decision tree:
— Do not consider all features when searching for the optimal rule.
— Each split only considers a small number of randomly-chosen features.
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Random Forest Ingredient 2: Random Trees

When fitting each decision stump to construct deep decision tree:
— Do not consider all features when searching for the optimal rule.
— Each split only considers a small number of randomly-chosen features.

These random trees will tend to be very different from each other.
— They will still overfit, but in *different™ ways.

The average tends to have a much lower test error.
Empirically, random forests are one of the “best” classifiers.

Fernandez-Delgado et al. [2014]:
— Compared 179 classifiers on 121 datasets.
— Random forests are most likely to be the best classifier.



Summary

1. Encouraging invariance:
e Add transformed data to be insensitive to the transformation.

Ensemble methods take classifiers as inputs.
Boosting turns ‘weak’ classifiers into ‘strong’ classifiers.
Averaging predictions often improves performance.

Al S

Random forests:
 Averaging of deep randomized decision trees.
e One of the best “out of the box” classifiers.

* Next time:
— We start unsupervised learning.



Bonus Slide: Why does Bootstrapping give 63%?

* Probability of an arbitrary x, being selected in a bootstrap sample:
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Bonus Slide: Why Random Forests Work

Consider ‘k’ independent classifiers, whose errors have a variance of o2.

If the errors are IID, the variance of the average is o0%/k.

— So the more classifiers you average, the more you decrease error variance.
(And the more the training error approximates the test error.)

Generalization to case where classifiers are not independent is:
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— Where ‘¢’ is the correlation.
So the decreasing correlation gets you closer to independent case.
Randomization in random forests decreases correlation between trees.



Bonus Slide: Bayesian Model Averaging

* Recall the key observation regarding ensemble methods:
— If models overfit in “different” ways, averaging gives better performance.

e But should all models get equal weight?

— E.g., decision trees of different depths, when lower depths have low
training error.

— E.g., a random forest where one tree does very well (on validation error)
and others do horribly.

— In science, research may be fraudulent or not based on evidence.

* In these cases, naive averaging may do worse.



Bonus Slide: Bayesian Model Averaging

* Suppose we have a set of ‘m’ probabilistic binary classifiers w..
* |f each one gets equal weight, then we predict using:
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* So we should weight by probability that w; is the correct model:
— Equal weights assume all models are equally probable.



Bonus Slide: Bayesian Model Averaging, .

Can get better weights by conditioning on training set:

The ‘likelihood’ p(y | w;, X) makes sense:
— We should give more weight to models that predict ‘v’ well.
— Note that hidden denominator penalizes complex models.

The “prior’ p(w;) is our ‘belief’ that w; is the correct model.
This is how rules of probability say we should weigh models.

— The ‘correct’ way to predict given what we know.
— But it makes people uncomfortable because it is subjective.
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