
CPSC 340:
Machine Learning and Data Mining

Non-Parametric Models

Fall 2016

Admin

• Course add/drop deadline tomorrow.

• Assignment 1 is due Friday.

– Setup your CS undergrad account ASAP to use Handin:

• https://www.cs.ubc.ca/getacct

– Instructions for handin posted to Piazza.

– Start the assignment ASAP, if you haven’t already.

• The material will be getting much harder and the workload much higher.

https://www.cs.ubc.ca/getacct

Application: E-mail Spam Filtering

• Want a build a system that filters spam e-mails:

• We formulated as supervised learning:

– (yi = 1) if e-mail ‘i’ is spam, (yi = 0) if e-mail is not spam.

– (xij = 1) if word/phrase ‘j’ is in e-mail ‘i’, (xij = 0) if it is not.

$ Hi CPSC 340 Vicodin Offer …

1 1 0 0 1 0 …

0 0 0 0 1 1 …

0 1 1 1 0 0 …

… … … … … … …

Spam?

1

1

0

…

Generative Models

• We considered spam filtering methods based on generative models:

• What do these terms mean?

ALL E-MAILS
(including duplicates)

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi) is probability that a random e-mail has features xi.

ALL E-MAILS
(including duplicates)

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi) is probability that a random e-mail has features xi.

ALL E-MAILS
(including duplicates)

ALL E-MAILS
(including duplicates)

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi) is probability that a random e-mail has features xi.

ALL E-MAILS
(including duplicates)

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi) is probability that a random e-mail has features xi.

• Hard, but not needed to classify using:
p(yi = ‘spam’ | xi) > p(yi = ‘not spam’ | xi)

Generative Models

• We considered spam filtering methods based on generative models:

• p(yi = ‘spam’) is probability that a random e-mail is spam.

ALL E-MAILS
(including duplicates)

SPAM
NOT

SPAM • Hard to compute exactly.
• But is easy to approximate from data:

• Count (#spam in data)/(#messages)

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi | yi = ‘spam’) is probability that spam has features xi.

ALL E-MAILS
(including duplicates)

NOT
SPAM SPAM

Generative Models

• We considered spam filtering methods based on generative models:

• p(xi | yi = ‘spam’) is probability that spam has features xi.

ALL E-MAILS
(including duplicates)

NOT
SPAM

• Very hard to estimate:
• Too many possible xi.

SPAM

Naïve Bayes

• How the naïve Bayes model deals with the hard terms:

• Now only need easy quantities like p(‘vicodin’ = 1| yi = ‘spam’).

Naïve Bayes Models

• p(vicodin = 1 | spam = 1) is probability of seeing ‘vicodin’ in spam.

ALL POSSIBLE E-MAILS
(including duplicates)

SPAM
NOT

SPAM • Easy to estimate:
• #(spam w/ Vicodin)/#spam

• “Maximum likelihood estimate”

Vicodin

Naïve Bayes

• Naïve Bayes more formally:

– Assumption: all xi are conditionally independent give yi.

Independence of Random Variables

• Events A and B are independent if p(A,B) = p(A)p(B).

– Equivalently: p(A|B) = p(A).

– “Knowing B happened tells you nothing about A”.

– We use the notation:

• Random variables are independent if p(x,y) = p(x)p(y) for all x and y.

– Flipping two coins:
p(C1 = ‘heads’, C2 = ‘heads’) = p(C1 = ‘heads’)p(C2 = ‘heads’).
p(C1 = ‘tails’, C2 = ‘heads’) = p(C1 = ‘tails’)p(C2 = ‘heads’).
…

Conditional Independence

• A and B are conditionally independent given C if
p(A, B | C) = p(A | C)p(B | C).

– Equivalently: p(A | B, C) = p(A | C).

– “Knowing C happened, also knowing B happened says nothing about A”.

– Example: p(Pizza | D1, Survive) = p(Pizza | Survive).

– Knowing you survived, dice 1 gives no information about chance of pizza.

– We use the notation:

• Semantics of p(A, B | C, D):

– “probability of A and B happening, if we know that C and D happened”.

Naïve Bayes

• In naïve Bayes: assume features are independent given label.

– “Once you know it’s spam, there is no dependency between features.”

– Not true, but sometimes a good approximation.

Naïve Bayes

• In naïve Bayes: assume features are independent given label.

– “Once you know it’s spam, there is no dependency between features.”

– Not true, but sometimes a good approximation.

Decision Trees vs. Naïve Bayes

• Decision trees:

1. Sequence of rules based on 1 feature.

2. Training: 1 pass over data per depth.

3. Hard to find optimal tree.

4. Testing: just look at features in rules.

5. New data: might need to change tree.

6. Accuracy: good if simple rules work.

• Naïve Bayes:

1. Simultaneously combine all features.

2. Training: 1 pass over data to count.

3. Easy to find optimal probabilities.

4. Testing: look at all features.

5. New data: just update counts.

6. Accuracy: good if features almost
independent given label.

Naïve Bayes Issues

1. Do we need to store the full bag of words 0/1 variables?

– No: only need list of non-zero features for each e-mail.

• Could use a sparse matrix representation.

2. Problem with maximum likelihood estimate (MLE):

– MLE of p(‘lactase’ = 1| ‘spam’) is (#spam messages with ‘lactase’)/#spam.

– If you have no spam messages with lactase:

• p(‘lactase’ | ‘spam’) = 0, and message automatically gets through filter.

– Fix: imagine we saw/not-saw each word in spam/not-spam messages:

• “Laplace smoothing” for binary features: replace ncjk/nc with (ncjk + 1)/(nc + 2).

• A generalization is (ncjk + β)/(nc + 2β) for some constant “β”.

• If Xij can take ‘m’ values, you would (ncjk + β)/(nc + mβ).

Naïve Bayes Issues

3. During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:

• Logarithm turns multiplication of small numbers into addition of small numbers.

• Logarithm is monotonic, so it doesn’t change location of the maximum.

4. Are we equally concerned about spam vs. not spam?

Decision Theory

• True positives, false positives, false negatives, false negatives:

• The costs mistakes might be different:

– Letting a spam message through (false negative) is not a big deal.

– Filtering a not spam (false positive) message will make users mad.

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ True Positive False Positive

Predict ‘not spam’ False Negative True Negative

Decision Theory

• We can give a cost to each scenario, such as:

• Instead of assigning to most likely classify, minimize expected cost:

• Even if p(spam |xi) > p(not spam | xi),
– Might still classify as “not spam”,

if E[C(yhati = spam)] > E[C(yhati = not spam)].

Predict / True True ‘spam’ True ‘not spam’

Predict ‘spam’ 0 100

Predict ‘not spam’ 10 0

Decision Theory and Darts

• Post on decision theory in “darts”:

– http://www.datagenetics.com/blog/january12012/index.html

• If you are very accurate, obviously aim for the high-scoring regions.

• If you are very inaccurate, obviously aim for the middle.

• Decision theory gives you the best strategy for other accuracies.

http://www.datagenetics.com/blog/january12012/index.html

Parametric vs. Non-Parametric

• Decision trees and naïve Bayes are often not very accurate.

– Greedy rules or conditional independence might be bad assumptions.

– They are also parametric models.

Parametric vs. Non-Parametric

• Parametric models:

– Have a fixed number of parameters: size of “model” is O(1) in terms ‘n’.

• E.g., decision tree just stores rules.

• E.g., naïve Bayes just stores counts.

– You can estimate the fixed parameters more accurately with more data.

– But eventually more data doesn’t help: model is too simple.

• Non-parametric models:

– Number of parameters grows with ‘n’: size of “model” depends on ‘n’.

– Model gets more complicated as you get more data.

– E.g., decision tree whose depth grows with the number of examples.

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• KNN algorithm for classifying an object ‘x’:

1. Find ‘k’ training examples xi that are most “similar” to x.

2. Classify using the mode of their yi.

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• KNN algorithm for classifying an object ‘x’:

1. Find ‘k’ training examples xi that are most “similar” to x.

2. Classify using the mode of their yi.

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• KNN algorithm for classifying an object ‘x’:

1. Find ‘k’ training examples xi that are most “similar” to x.

2. Classify using the mode of their yi.

K-Nearest Neighbours (KNN)

• Classical non-parametric classifier is k-nearest neighbours (KNN).

• KNN algorithm for classifying an object ‘x’:

1. Find ‘k’ training examples xi that are most “similar” to x.

2. Classify using the mode of their yi.

K-Nearest Neighbours (KNN)

• Assumption:

– Objects with similar features likely have similar labels.

• There is no training phase (“lazy” learning).

– You just store the training data.

– Non-parametric because the size of the model is O(nd).

• But predictions are expensive: O(nd) to classify 1 test object.

– Tons of work on reducing this cost (we’ll discuss these later).

How to Define ‘Nearest’?

• There are many ways to define similarity between xi and xj.

• Most common is Euclidean distance:

• Other possibilities:
– L1 distance:

– Jaccard similarity (binary):

– Cosine similarity.

– Distance after dimensionality reduction (later in course).

– Metric learning (learn the best distance function).

Consistency of KNN

• With a small dataset, KNN model will be very simple.

• With more data, model gets more complicated:
– Starts to detect subtle differences between examples.

• With a fixed ‘k’, it has appealing consistency properties:
– With binary labels and under mild assumptions:

• As ‘n’ goes to infinity, KNN test error is less than twice irreducible error.

• Stone’s Theorem:
– If k/n goes to zero and ‘k’ goes to infinity:

• KNN is ‘universally consistent’: test error converges to the irreducible error.

• First algorithm shown to have this property.

• Does Stone’s Theorem violate the no free lunch theorem?
– No, requires assumptions on data and says nothing about finite training sets.

Summary

1. Naïve Bayes:

• Conditional independence assumptions to make estimation practical.

2. Decision theory allows us to consider costs of predictions.

3. Non-parametric models grow with number of training examples.

4. K-Nearest Neighbours:

• A simple non-parametric classifier.

• Appealing consistency properties.

• Next Time:

– Learning behind Microsoft Kinect.

Bonus Slide: Other Performance Measures

• Classification error might be wrong measure:

– Use weighted classification error if have different costs.

– Might want to use things like Jaccard measure: TP/(TP + FP + FN).

• Often, we report precision and recall (want both to be high):

– Precision: “if I classify as spam, what is the probability it actually is spam?”

• Precision = TP/(TP + FP).

• High precision means the filtered messages are likely to really be spam.

– Recall: “if a message is spam, what is probability it is classified as spam?”

• Recall = TP/(TP + FN)

• High recall means that most spam messages are filtered.

Bonus Slide: Precision-Recall Curve

• Consider the rule p(yi = ‘spam’ | xi) > t, for threshold ‘t’.

• Precision-recall (PR) curve plots precision vs. recall as ‘t’ varies.

http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

Bonus Slide: ROC Curve

• Receiver operating characteristic (ROC) curve:

– Plot true positive rate (recall) vs. false positive rate (FP/FP+TN).
(negative examples classified as positive)

– Diagonal is random, perfect classifier would be in upper left.

– Sometimes papers report area under curve (AUC).
http://pages.cs.wisc.edu/~jdavis/davisgoadrichcamera2.pdf

Bonus Slide: Avoiding Underflow

• During the prediction, the probability can underflow:

• Standard fix is to (equivalently) maximize the logarithm of the probability:

Bonus Slide: p(xi) under naïve Bayes

• Generative models don’t need p(xi) to make decisions.

• However, it’s easy to calculate under the naïve Bayes assumption:

Bonus Slide: Less-Naïve Bayes

• Given features {x1,x2,x3,…,xd}, naïve Bayes approximates p(y|x) as:

• The assumption is very strong, and there are “less naïve” versions:

– Assume independence of all variables except up to ‘k’ largest ‘j’ where j < i.

• E.g., naïve Bayes has k=0 and with k=2 we would have:

• Fewer independence assumptions so more flexible, but hard to estimate for large ‘k’.

– Another practical variation is “tree-augmented” naïve Bayes.

Bonus Slide: Computing all distances in Matlab

Bonus Slide: Computing all distances in Matlab

