CPSC 340: Machine Learning and Data Mining

Admin

- Assignment 5:
 - 3 late days to hand in Friday.
- Assignment 6:
 - Due Friday, 1 late day to hand in next Monday, etc.
- Final:
 - December 12 (8:30am HEBB 100)
 - Covers Assignments 1-6.
 - List of topics posted.
 - Final from last year will be posted Friday.
 - Closed-book, cheat sheet: 4-pages each double-sided.

Last Time: Ranking

- In ranking, goal is to output ordering of objects.
- We discussed supervised ranking:
 - Given item relevance, formulate as regression or ordinal regression.

$$f(w) = \hat{z} - \log p(y_i | x_{i_1} w) + \hat{z} - \log p(w_i | x_i)$$

– Given pairwise preferences, define loss by probability ratios.

$$f(n) = \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \max \{0, | -| \log p(y_i | x_{ij} w) + \log p(y_i | x_{ij} w) \} \{1, j \in \mathbb{N} \\ \text{Want } y_i \neq y_i \neq y_i \} = \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}} \sum_{\substack{(i,j) \in \mathbb{R} \\ \text{Want } y_i \neq y_i \neq y_i}}$$

Last Time: PageRank and Markov Chains

- We discussed Markov chains for analysing sequences:
 - Initial distribution over a set of states.
 - Transition probability between each combination of states.
- Typical operations we can perform in Markov chains:
 - Generate sample sequences.
 - Compute marginal probabilities $p(x_t = s)$.
 - Compute stationary distributions.
- We discussed PageRank algorithm for ranking nodes in a graph:
 - Stationary distribution of random walk through webpages:
 - With probability α , go to a random webpage.
 - With probability 1- α , follow a random link.

Today: Semi-Supervised Learning

• Our usual supervised learning framework:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1

• In semi-supervised learning, we also have unlabeled examples:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••
0.3	0	1.2	0.3	0.10	0.01	
0.6	0.7	0	0.3	0	0.01	
0	0.7	0	0.6	0	0	
0.3	0.7	0	0	0.20	0.01	

• The semi-supervised learning (SSL) framework:

- This arises a lot:
 - Usually getting unlabeled data is easy but getting labeled data is hard.
 - Why build a classifier if getting labels is easy?
- Common situation:
 - A small number of labeled examples.
 - A huge number of unlabeled examples: t >> n.

Transductive vs. Inductive SSL

• Transductive SSL:

- Only interested in labels of the **given** unlabeled examples.

t×1

Transductive vs. Inductive SSL

 \sim -

- Transductive SSL:
 - Only interested in labels of the **given** unlabeled examples.
- Inductive SSL:

- Interested in the test set performance on new examples. Training $\chi = \left(\begin{array}{c} & & \\ &$

txd

- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).

- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).

- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).

- Why should unlabeled data tell us anything about the labels?
 - Usually, we assume that: (similar features ⇔ similar labels).

- Will unlabeled examples help in general?
 No!
- Consider choosing random 'x_i' values, then computing 'y_i'.
 - Unlabeled examples collected in this way will not help.
 - By construction, distribution of ' x_i ' says nothing about ' y_i '.

- Example where SSL is not possible:
 - Try to detect food allergy by trying 'random' combinations of food.
 - The actual 'random' process isn't important, as long it doesn't depend on 'y_i'.
 - Unlabeled data would be more random combinations:

• You can generate all possible unlabeled data, but it says nothing about labels.

• When can unlabeled examples help?

- Consider 'y_i' somehow influencing data we collect:
 - Now there is information about labels contained in unlabeled examples.
 - Example 1: we try to have an even number of $y_i = +1$ and $y_i = -1$.
 - Example 2: we need to choose non-random ' x_i ' to correspond to a valid ' y_i '
 - We are almost always in this case.

- Example where SSL is possible:
 - Trying to classify images as 'cat' vs. 'dog':

- Unlabeled data would be images of cats or dogs: not random images.
 - Unlabeled data contains information about what images of cats and dogs look like.
 - E.g., clusters or manifolds in unlabeled images.
- Contrast this with 'cat' vs. 'not cat':
 - If we generate random images then label them, unlabeled data won't help.
 - If we know that half our unlabeled images are cats, unlabeled could help.

SSL Approach 1: Self-Taught Learning

- Self-taught learning is similar to k-means:
 - 1. Fit a model based on the labeled data.
 - 2. Use the model to label the unlabeled data.
 - 3. Use estimated labels to fit model based on labeled and unlabeled data.
 - 4. Go back to 2.
- Obvious problem: it can reinforce errors and even diverge.
- Possible fixes:
 - Only use labels are you very confident about.
 - Regularize the loss from the unlabeled examples:

$$f(w) = \frac{1}{2} \| \chi_{w} - \gamma \|^{2} + \frac{1}{2} \| \bar{\chi}_{w} - \hat{\gamma} \|^{2}$$

A controls how 7 much we trust quesses on unlabeled date

Sprediction from step 2

SSL Approach 1: Self-Taught Learning

$$\begin{bmatrix} Train on & \xi_{X,Y} & \xi_{Y,Y} \\ model &= & fit(X,Y) \\ 2 & Guess & labels: \\ & \hat{y} &= & model. \\ & predict(\bar{X}) \\ 3 & Train on & bigger data set: \\ & model &= & fit(\begin{bmatrix} X \\ X \end{bmatrix}, \begin{bmatrix} Y \\ Y \end{bmatrix}, 7) \\ & model &= & fit(\begin{bmatrix} X \\ X \end{bmatrix}, \begin{bmatrix} Y \\ Y \end{bmatrix}, 7) \\ \end{bmatrix}$$

SSL Approach 2: Co-Training

- Assumes that we have 2 sets of features:
 - Both sets are sufficient to give high accuracy.
 - The sets are conditionally independent given the label.
 - E.g., image features (set 1) and caption features (set 2).

to touch.

• Co-training:

- 1. Using labeled set, fit model 1 based on set 1, fit model 2 based on set 2.
- 2. Label a random subset of unlabeled examples based on both models.
- 3. Move examples where each classifier is most confident to labeled set.
- 4. Go back to 1.
- Hope is that models "teach" each other to achieve consensus.
 - Theoretically works if assumptions above are satisfied.

SSL Approach 2: Co-Training
(). Split features into X, and X₂

$$X = \begin{bmatrix} X_1 & X_2 \end{bmatrix}$$

I. Train models on X₁ and X₂:
model I = fit(X₁, y) model 2 = fit(X₂, y)
Z. Givess labels of unlabelled examples:
 $\hat{Y_1} = model. predict(\bar{X_1})$ $\hat{Y_2} = model. predict(\bar{X_2})$
Use render
 $\hat{Y_1} = model. predict(\bar{X_1})$ $\hat{Y_2} = model. predict(\bar{X_2})$
subset to
imple render. 3. Choose subset of unlabeled, add "most" confident predictions to labeled
data.

SSL Approach 3: Entropy Regularization

- Self-taught and co-training predictions may propagate errors.
- Instead of making predictions, encourage "predictability":
 - Entropy regularization: penalize "randomness" of labels on unlabeled.
 - Transductive SVMs: avoid decision boundaries in dense regions.

Graph-Based Methods (Label Propagation)

- We can only do SSL because (similar features ⇔ similar labels).
- Graph-based SSL uses this directly.
 - Define weighted graph on training examples:
 - For example, use KNN graph or points within radius ' ϵ '.
 - Weight is how 'important' it is for nodes to share label.

Graph-Based SSL (Label Propagation)

• Treat unknown labels as variables, minimize cost of disagreement:

- Treat labels y_i as variables (they might be wrong).
 - Weight how much you trust original labels.
- Regularize the unlabeled \overline{y}_i towards a default value.
 - Can reflect that example is really far from any labeled example.

Example: Tagging YouTube Videos

- Example:
 - Consider assigning 'tags' to YouTube videos (e.g., 'cat').
 - Construct a graph based on sequences of videos that people watch.
 - Give high weight if video A is often followed/preceded by video B.
 - Use label propagation to tag all videos.
- Becoming popular in bioinformatics:
 - Label a subset of genes using manual experiments.
 - Find out which genes interact using more manual experiments.
 - Predict function/location/etc of genes using label propagation.
- Comments on graph-based SSL:
 - Transductive method: only estimates the unknown labels.
 - Often surprisingly effective even if you only have a few labels.
 - Does not need features if you have the weighted graph.

Graph-Based SSL as Markov Chain

- Standard graph-based SSL has a random walk interpretation:
 - At time t = 0, set your state to the node you want to label.
 - At time t > 0 and on a labeled node, output the label.
 - At time t > 0 and on an unlabeled node:
 - Move to neighbour 'j' with probability proportional to w_{ij} .
- Final predictions are probabilities of outputting each label.
- Labeled nodes are called absorbing states in the Markov chain:
 States that you can never leave from.
- Common variation where you don't "trust" labels:
 - Include absorbing-state "label node" as a neighbour of labeled nodes.
 - These neighbours get chosen with probability proportional to w_{ii} .

What else can we do with random walks?

- We've discussed random walks for ranking and SSL.
 - Useful for problems defined on graphs.
 - We can convert from features to graphs using things like KNN graphs.
- Random walks for other tasks:
 - Outlier detection with outrank:
 - Examples with low PageRank are considered outliers (can detect outlier clusters).

What else can we do with random walks?

- We've discussed random walks for ranking and SSL.
 - Useful for problems defined on graphs.
 - We can convert from features to graphs using things like KNN graphs.
- Random walks for other tasks:
 - Clustering with spectal clustering (and "spectral graph theory):
 - "If we start in cluster 'c', random walk should stay in cluster 'c'".

Graph representation of data

Bad clustering

Graph-Based Clustering Methods

http://gimsgraphs.worupress.com/tag/clustering/

http://ascr-discovery.science.doe.gov/2013/09/sifting-genomes/

https://www.hackdiary.com/2012/04/05/extracting-a-social-graph-from-wikipedia-people-pages/

What else can we do with Markov chains?

- Common tasks we want to do with Markov chains:
 - **1**. Sampling: given model, simulate from $p(x_t, x_{t-1}, ..., x_0)$.
 - 2. Inference: given model, compute $p_t(x_t = s)$.
 - 3. Stationary distribution: $p_{\infty}(x_{\infty} = s)$.
 - 4. Decoding: find most likely sequence: $\max_{x_{1,x_{2,...,x_{t}}}} p(x_t, x_{t-1}, x_{t-2}, ..., x_0)$.
 - 5. Conditional inference: $p(x_t = s_1 | x_{t-1} = s_2, x_{t+10} = s_3)$.
 - 6. Learning: estimating $p(x_t = s_1 | x_t = s_2)$ from data to make model.
- Each of these is useful in particular applications.
- Generalizations of Markov models (CPSC 540):
 - Hidden Markov models: can't directly observe state of Markov model.
 - Sequence of observations depends on values of hidden states of Markov chain.
 - Graphical models generalize Markov chains beyond sequences:
 - Hierarchies, images, general graphs.

Fun with Markov Chains

- Snakes and ladders:
 - <u>http://datagenetics.com/blog/november12011/index.html</u>
- Candyland:
 - <u>http://www.datagenetics.com/blog/december12011/index.html</u>
- Yahtzee:
 - <u>http://www.datagenetics.com/blog/january42012</u>
- Find your car keys:
 - <u>http://datagenetics.com/blog/november32016/index.html</u>

Summary

- Semi-supervised learning uses unlabeled data in supervised task.
 - Transductive learning only focuses on labeling this data.
 - SSL may or may not help, depending on structure of data.
- Self-taught/co-training alternate labeling/fitting.
- Graph-based SSL propagates labels in graph (no features needed).
- Random walks can be used for other tasks:
 - Outrank for outlier detection.
 - Spectral clustering for clustering.
- Next time:
 - Review of topics we've covered, overview of topics we didn't.