CPSC 340:
Machine Learning and Data Mining



Admin

* Assignment 5 now due tomorrow at 2pm.
— Extra offices hours today at 4:30-5:30 in ICICS 104.
— 1 late day to hand in Monday, 2

* Assignment 6:
— Due next Friday (usual late day policy, assuming phantom “classes”).
— Neural network code updated to be easier to understand/modify.
* Final:
— December 12 (8:30am — HEBB 100)
— Covers Assignments 1-6.
— List of topics will be posted this weekend.
— Final from last year will be posted next weekend.
— Closed-book, cheat sheet: 4-pages each double-sided.



Last Time: Convolutions

1D convolution:

— Takes signal ‘x” and filter ‘w’ to produces vector ‘Z’:
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— Can be written as a matrix multiplication

)y -2\ 0 O QO -

O

_ R R
W=l % o v 21 0 - 0
D

~ o0 o O O o (O -~ -



Last Time: Convolutions

e 2D convolution:

— Signal X/, filter ‘w’, and output ‘" are now all images/matrices:
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— Vectorized ‘z’ can be written as a matrix multiplication with vectorized ‘x’:
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Last Time: Convolutional Neural Networks

e Classic approach uses fixed convolutions as features:
— Usually have different types/variances/orientations.
— Can do subsampling or taking maxes across locations/orientations/scales.




Last Time: Convolutional Neural Networks

* Convolutional neural networks learn the features:
— Learning ‘W’ and ‘w’ automatically chooses types/variances/orientations.
— Can do multiple Iayers of convolution to get deep hierarchical features.

LOCATION FEATURE RECEPTIVE FIELD SIZE
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Last Time: Convolutional Neural Networks

Classic convolutional neural network (LeNet):
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* Visualizing the “activations” of the layers:
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— http://scs.ryerson.ca/~aharley/vis/conv
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http://scs.ryerson.ca/~aharley/vis/conv

AlexNet Convolutional Neural Network

* ImageNet 2012 won by AlexNet:

— 15.4% error vs. 26.2% for closest competitor.

— 5 convolutional layers.

— 3 fully-connected layers.
— SG with momentum.

— RelLU non-linear functions.

— Data translation/reflection/
cropping.

— L2-regularization + Dropout.

— 5-6 days on two GPUs.
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624—-64,896-64,896-43,264—

4096—4096-1000.



AlexNet Convolutional Neural Network

* ImageNet 2012 won by AlexNet: 9 Gaussian fimes Sine rnsine
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/FNet Convolutional Neural Network

* ImageNet 2013 won by variation of AlexNet called ZF Net:

— 11.2% error (now using 11x11 instead of 7x7).
— Introduced deconvolutional networks to visualize what CNNs learn.
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Figure 1. Top: A deconvnet layer (left) attached to a con-
vnet layer (right). The deconvnet will reconstruct an ap-
proximate version of the convnet features from the layer
beneath. Bottom: An illustration of the unpooling oper-
ation in the deconvnet, using switches which record the
location of the local max in each pooling region (colored
zones) during pooling in the convnet.




/FNet Convolutional Neural Network
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/FNet Convolutional Neural Network
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/FNet Convolutional Neural Network




/FNet Convolutional Neural Network

* Looked at how prediction changes if we hide part of the image:




VGG Convolutional Neural Network

* Image 2014 “Localization” Task won by a 19-layer VGG network:
— 7.3% error for classification (2"? place).
— Uses 3x3 convolution layers with stride of 1:

* 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
e Speeds things up and reduces number of parameters.
* Increases number of non-linear ReLU operations.

— “Deep and simple varlants of VGG are the most popular CNNs.
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GoogleNet

* Image 2014 classification task won by GooglLeNet:

=

— 6.7% errors.
— 22 layers

* No fully connected layers.
* During training, try to predict label at multiple locations. o :H

— During testing, just take the deepest predictions.

* “Inception” modules: combine convolutions of different sizes.
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ResNet

* Image 2015 won by Resnet (all 5 tasks):
— 3.6% error (below estimate 5% human error).
— 152 layers (2-3 weeks on 8 GPUs to train).
— “Residual learning” allows better performance with deep networks:

* Include input to layer in addition to non-linear transform.
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Figure 2. Residual learning: a building block.

* Network just focuses on “residual”: what is not captured in original signal.



Mission Accomplished?

* For speech recognition and object detection:
— No other methods have ever given the current level of performance.
— But, we also don’t know how to scale up other universal approximators.
— There is likely some overfitting to these particular tasks.
* Despite high-level of abstraction, deep CNNs are easily fooled:
— But progress on fixing ‘blind spots’. H===




CNNs for Rating Selfies

_ Our training data
Bad selfies Good selfies




CNNs for Rating Selfies
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CNNs for Rating Selfies

score 53.1 score 67.3
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Beyond Classification

* “Fully convolutional” neural networks allow “dense” prediction:

forward /inference

4
backward /learning &
<

Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

— Best methods combine these with graphical models or LSTMs (CPSC 540).

FCN-8s SDS[17] Ground Truth Image

* |Image segmentation: '

DB

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan er al. [ 1 7]. Notice the fine structures recovered (first




Beyond Classification
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* “Fully convolutiona
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-

— Best methods combinelfhese with graphical models or LSTMs (CPSC 540).
* Depth Estimation:




Beyond Classification

* Image colorization:
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Berry Field, June 1909

Hamilton, 1936

— Image Gallery, Video



http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/extra.html
https://www.youtube.com/watch?time_continue=30&v=ys5nMO4Q0iY

Inceptionism

* Acrazy idea:
— Instead of weights, use backpropagation to take gradient with respect to x..

* Inceptionism with trained network:
— Fix the label y, (e.g., “banana”).
— Start with random noise image x.. ' » N
— Use gradient descent on image x.. Show whdl ) ou Thak 6 bonane looks hite

— Add a spatial regularizer on xi:

* Encourages neighbouring x;; to be similar. § .'}‘_v:'lj"t L

optimize
with prior




Inceptionism

* |Inceptionism for different class labels:

Parachute Screw



Inceptionism

* Inceptionism where we try to match z(™ values instead of y..

— Shallow ‘m’:




Inceptionism

* Inceptionism where we try to match z™ values instead of y..

— Deepest ‘m’: = [ RO LY
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"Admiral Dog!" "The Pig-Snail" "The Camel-Bird" "The Dog-Fish"



Inceptionism

* Inceptionism where we try to match z™ values instead of y..

— “Deep dream” starts from random noise:
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— Inceptionism gallery

— Deep Dream video



https://photos.google.com/share/AF1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ?key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB
https://www.youtube.com/watch?v=dbQh1I_uvjo

Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S’.
— Make a image that has content of ‘C’ and style of ‘S’.



Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S..
— Make a image that has content of ‘C’ and style of ‘S’.

Con‘}e h{:




Artistic Style Transfer

* Artistic style transfer:
— Given a content image ‘C’ and a style image ‘S’.
— Make a image that has content of ‘C’ and style of ‘S’.

* CNN-based approach applies gradient descent with 2 terms:
— Loss function: match deep latent representation of content image ‘C’:
* Difference between z™ for deepest ‘m’ between x. and ‘C’.

— Regularizer: match all latent representation covariances of style image ‘S’.

» Difference between covariance of z™ for all ‘m’ between x, and ‘C".



Artistic Style Transfer

Image Gallery



http://www.boredpanda.com/inceptionism-neural-network-deep-dream-art/

L Image Construction

Examples

Figure: Left: My friend Grant, Right: Grant as a pizza
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Artistic Style Transfer

Recent methods combine CNNs with graphical models (CPSC 540):

TR
Content A+ Style B Content B + Style A




Artistic Style Transfer

Recent methods combine CNNs with graphical models (CPSC 540):

Input style

Input content Ours



Artistic Style Transfer for Video

 Combining style transfer with optical flow:
— https://www.youtube.com/watch?v=Khuj4ASIdmU

* Videos from Ricky’s paper:



https://www.youtube.com/watch?v=Khuj4ASldmU

