CPSC 340: Machine Learning and Data Mining

More CNNs Fall 2016

Admin

- Assignment 5 now due tomorrow at 2pm.
 - Extra offices hours today at 4:30-5:30 in ICICS 104.
 - 1 late day to hand in Monday, 2
- Assignment 6:
 - Due next Friday (usual late day policy, assuming phantom "classes").
 - Neural network code updated to be easier to understand/modify.
- Final:
 - December 12 (8:30am HEBB 100)
 - Covers Assignments 1-6.
 - List of topics will be posted this weekend.
 - Final from last year will be posted next weekend.
 - Closed-book, cheat sheet: 4-pages each double-sided.

Last Time: Convolutions

• 1D convolution:

- Takes signal 'x' and filter 'w' to produces vector 'z':

– Can be written as a matrix multiplication:

Last Time: Convolutions

• 2D convolution:

- Signal 'x', filter 'w', and output 'z' are now all images/matrices:

Last Time: Convolutional Neural Networks

- Classic approach uses fixed convolutions as features:
 - Usually have different types/variances/orientations.
 - Can do subsampling or taking maxes across locations/orientations/scales.

Last Time: Convolutional Neural Networks

- Convolutional neural networks learn the features:
 - Learning 'W' and 'w' automatically chooses types/variances/orientations.
 - Can do multiple layers of convolution to get deep hierarchical features.

Last Time: Convolutional Neural Networks

• Classic convolutional neural network (LeNet):

- Visualizing the "activations" of the layers:
 - <u>http://scs.ryerson.ca/~aharley/vis/conv</u>

- ImageNet 2012 won by AlexNet:
 - 15.4% error vs. 26.2% for closest competitor.
 - 5 convolutional layers.
 - 3 fully-connected layers.
 - SG with momentum.
 - ReLU non-linear functions.
 - Data translation/reflection/ cropping.
 - L2-regularization + Dropout.
 - 5-6 days on two GPUs.

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

- ImageNet 2012 won by AlexNet:
 - 15.4% error vs. 26.2% for closest competitor.

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The

ure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities veen the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts is bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–6–4096–1000.

- ImageNet 2013 won by variation of AlexNet called ZF Net: •
 - -11.2% error (now using 11x11 instead of 7x7).
 - Introduced deconvolutional networks to visualize what CNNs learn.

Layer 1

	1997 -		22. 22.							
	18		No.		1.15			1		i.
					1					Ę
dEddi 	a.	19 19	\$ 2	×	*	and and a		15		R,
	199	000		50	-		Sent	R	AF	
64	(B),		12	Ú	- <u>1</u>				T.d	L
aijy	1. Alter	-	Ø		(2)			0	A	
10×	-	Sec	0	(a)	0	C.C.		8	0	8
200 100	-54 24 24				6			8	Q	
(A)	- Alexandre	and the second s	×.	N.	N.		10	M	X	N
197	H.	2.5	X	9 70	No.	3		1	A	论
Sec.	R.	Śr	×	(it)	E	<u>)</u> 3	F	H		1
0		0		0	0	8 8	8		9	i
٨		3		۲	(d)	Sea of			Pro	-0
Layer 5			E		10	50	8		2	1º

https://arxiv.org/pdf/1311.2901v3.pdf

• Looked at how prediction changes if we hide part of the image:

http://cs231n.github.io/understanding-cnn,

VGG Convolutional Neural Network

- Image 2014 "Localization" Task won by a 19-layer VGG network:
 - 7.3% error for classification (2nd place).
 - Uses 3x3 convolution layers with stride of 1:
 - 3x3 followed by 3x3 simulates a 5x5, and another 3x3 simulates a 7x7, and so on.
 - Speeds things up and reduces number of parameters.
 - Increases number of non-linear ReLU operations.
 - "Deep and simple": variants of VGG are the most popular CNNs.

GoogLeNet

- Image 2014 classification task won by GoogLeNet:
 - 6.7% errors.
 - 22 layers
 - No fully connected layers.
 - During training, try to predict label at multiple locations.
 - During testing, just take the deepest predictions.
 - "Inception" modules: combine convolutions of different sizes.

ResNet

- Image 2015 won by Resnet (all 5 tasks):
 - 3.6% error (below estimate 5% human error).
 - 152 layers (2-3 weeks on 8 GPUs to train).
 - "Residual learning" allows better performance with deep networks:
 - Include input to layer in addition to non-linear transform.

Figure 2. Residual learning: a building block.

• Network just focuses on "residual": what is not captured in original signal.

Mission Accomplished?

- For speech recognition and object detection:
 - No other methods have ever given the current level of performance.
 - But, we also don't know how to scale up other universal approximators.
 - There is likely some overfitting to these particular tasks.
- Despite high-level of abstraction, deep CNNs are easily fooled:
 - But progress on fixing 'blind spots'.

CNNs for Rating Selfies

Our training data

Bad selfies

Good selfies

https://karpathy.github.io/2015/10/25/selfie

CNNs for Rating Selfies

- Be female - Have face be 1/2 of image
- Cut off forehead
- -Show long hair
- Oversaturate face
- Use filter

 D_0 :

-Add bordyr

Don't: - Use low lighting - Make head too big - Take group shots 2

CNNs for Rating Selfies

score 66.5

score 44.5

score 62.8

score 53.1

score 52.0

score 67.3

score 56.3

Finding best image crop:

Beyond Classification

• "Fully convolutional" neural networks allow "dense" prediction:

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

- Best methods combine these with graphical models or LSTMs (CPSC 540).

• Image segmentation:

Figure 6. Fully convolutional segmentation nets produce stateof-the-art performance on PASCAL. The left column shows the output of our highest performing net, FCN-8s. The second shows the segmentations produced by the previous state-of-the-art system by Hariharan *et al.* [17]. Notice the fine structures recovered (first

https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf

Beyond Classification

• "Fully convolutional" neural networks allow "dense" prediction:

Figure 1. Fully convolutional networks can efficiently learn to make dense predictions for per-pixel tasks like semantic segmentation.

- Best methods combine these with graphical models or LSTMs (CPSC 540).
- Depth Estimation:

Beyond Classification

• Image colorization:

- Image Gallery, Video

http://hi.cs.waseda.ac.jp/~iizuka/projects/colorization/en

- A crazy idea:
 - Instead of weights, use backpropagation to take gradient with respect to x_i.
- Inceptionism with trained network:
 - Fix the label y_i (e.g., "banana").
 - Start with random noise image x_i.
 - Use gradient descent on image x_i.
 - Add a spatial regularizer on xi:
 - Encourages neighbouring x_{ii} to be similar.

"Show what you think a banana looks like."

• Inceptionism for different class labels:

Ant

Parachute

Measuring Cup

Banana

Anemone Fish

Dunbbell

Starfish

- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - Shallow 'm':

- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - Deepest 'm':

"Admiral Dog!"

"The Pig-Snail"

"The Camel-Bird"

"The Dog-Fish"

http://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

- Inceptionism where we try to match $z_i^{(m)}$ values instead of y_i .
 - "Deep dream" starts from random noise:

- <u>Inceptionism gallery</u>
- Deep Dream video ttp://googleresearch.blogspot.ca/2015/06/inceptionism-going-deeper-into-neural.html

- Artistic style transfer:
 - Given a content image 'C' and a style image 'S'.
 - Make a image that has content of 'C' and style of 'S'.

- Artistic style transfer:
 - Given a content image 'C' and a style image 'S'.
 - Make a image that has content of 'C' and style of 'S'.

Content:

https://commons.wikimedia.org/wiki/File:Tuebingen_Neckarfront.jpg https://en.wikipedia.org/wiki/The_Starry_Night

- Artistic style transfer:
 - Given a content image 'C' and a style image 'S'.
 - Make a image that has content of 'C' and style of 'S'.
- CNN-based approach applies gradient descent with 2 terms:
 - Loss function: match deep latent representation of content image 'C':
 - Difference between $z_i^{(m)}$ for deepest 'm' between x_i and 'C'.
 - Regularizer: match all latent representation covariances of style image 'S'.
 - Difference between covariance of $z_i^{(m)}$ for all 'm' between x_i and 'C'.

Image Gallery

Examples

Figure: Left: My friend Grant, Right: Grant as a pizza

・ロト・ボー・ミト・ミト ミ のQで 34/53

Recent methods combine CNNs with graphical models (CPSC 540): •

Content A + Style B Content B + Style A

• Recent methods combine CNNs with graphical models (CPSC 540):

Input style

Input content

Ours

Artistic Style Transfer for Video

- Combining style transfer with optical flow:
 - <u>https://www.youtube.com/watch?v=Khuj4ASldmU</u>
- Videos from Ricky's paper:

