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Admin

• Assignment 5:

– Due Friday, 1 late day to hand in Monday, etc.

• Assignment 6:

– Due next Friday (usual late day policy, assuming phantom “classes”).

• Final:

– December 12 (8:30am – HEBB 100)

– Covers Assignments 1-6.

– Final from last year and list of topics will be posted.

– Closed-book, cheat sheet: 4-pages each double-sided. 



Last Lectures: Deep Learning

• We’ve been discussing neural network / deep learning models:

• On Friday we discussed unprecedented vision/speech performance.

https://arxiv.org/pdf/1409.0575v3.pdf



Last Lectures: Deep Learning

• We’ve been discussing neural network / deep learning models:

• On Monday we discussed heuristics to make it work:

– Parameter initialization and data transformations.

– Setting the step size(s) in stochastic gradient.

– Alternative non-linear functions like ReLU.

– Different forms of regularization:

• L2-regularization, early stopping, dropout.

• These are often still not enough to get deep models working.



Motivation: Automatic Brain Tumor Segmentation

• Task: segmentation tumors and normal tissue in multi-modal MRI data.

• Applications:
– Radiation therapy target planning, quantifying treatment responses.
– Mining growth patterns, image-guided surgery.

• Challenges:
– Variety of tumor appearances, similarity to normal tissue.
– “You are never going to solve this problem.”

Input: Output:



Naïve Voxel-Level Classifier

• We could treat classifying a voxel as supervised learning:

• We can formulate predicting yi given xi as supervised learning.

• But it doesn’t work at all with these features.



Need for Context

• The individual voxel values are almost meaningless:

– This xi could lead to different yi.

• Intensities not standardized.

• Non-trivial overlap in signal for different tissue types.

• “Partial volume” effects at boundaries of tissue types.



Need for Context

• We need to represent the spatial “context” of the voxel.

– Include all the values of neighbouring voxels?

• Using all voxels requires lots of data to find patterns.

– Measure summary statistics (mean, variance, etc.) of the neighbourhood?

• Loses spatial information present in voxels.

– Standard approach is uses convolutions to represent neighbourhood.



1D Convolution

• 1D convolution input:

– Signal ‘x’ which is a vector length ‘n’.

• Indexed by i=1,2,…,n.

– Filter ‘w’ which is a vector of length ‘2m+1’:

• Indexed by i=-m,-m+1,…-2,0,1,2,…,m-1,m

• 1D convolution output:

– New vector ‘z’ of length ‘n’ with elements:



1D Convolution Examples

• Element zi of 1D convolution is given by:

• Examples: 

– “Identity”

– “Translation”



1D Convolution Examples

• Element zi of 1D convolution is given by:

• Examples: 

– “Identity”

– “Average”



Boundary Issue

• What can we about the “?” at the edges?

• Can assign values past the boundaries:
• “Zero”:

• “Replicate”:

• “Mirror”:

• Or just ignore the “?” values and return a shorter vector:



1D Convolution in Matrix Notation

• Each element of a convolution is an inner product:

• So convolution is a matrix multiplication:



Why is this useful?

• Consider a 1D dataset:
– Want to classify each

time into yi in {1,2,3}.

– Example: sound data.

• Easy to distinguish class 2 from the other classes (xi are smaller).

• Harder to distinguish between class 1 and class 3 (similar xi range).
– But convolutions can represent that class 3 is more “spiky”.



1D Convolution Examples

• Translation convolution shift signal:



1D Convolution Examples

• Averaging convolution computes local mean:



1D Convolution Examples

• Averaging over bigger window gives coarser view of signal:



1D Convolution Examples

• Gaussian convolution blurs signal:

– Compared to averaging it’s more smooth and maintains peaks better.



1D Convolution Examples

• Sharpen convolution enhances peaks.



1D Convolution Examples

• Laplacian convolution approximates derivative:



1D Convolution Examples

• Laplacian convolution approximates derivative:



1D Convolution Examples

• Laplacian of Gaussian approximates derivative after blurring:



1D Convolution Examples

• We often use maximum over several convolutions as features:

– We could take maximum of Laplacian of Gaussian over xi and its 16 KNNs.



Why is this useful?

• Easy to distinguish class 2 from with original signal.

• Easy to distinguish class 1 from 3 with max(Laplacian(Gaussian)).
– Convolutions and max(convolutions) are very useful for sequence data.

• For sound data two related techniques are Fourier transforms and spectrograms.



Images and Higher-Order Convolution

• 2D convolution:

– Signal ‘x’ is the pixel intensities in an ‘n’ by ‘n’ image.

– Filter ‘w’ is the pixel intensities in a ‘2m+1’ by ‘2m+1’ image.

• The 2D convolution is given by:

• 3D and higher-order convolutions are defined similarly.



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples

http://setosa.io/ev/image-kernels

http://setosa.io/ev/image-kernels


Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



Image Convolution Examples



3D Convolution



3D Convolution



3D Convolution



3D Convolution



3D Convolution



Motivation for Convolutional Neural Networks

• Consider training neural networks on 256 by 256 images.

• Each zi in first layer has 65536 parameters (and 3x this for colour).

– We want to avoid this huge number (due to storage and overfitting).

• Key idea: make Wxi act like convolutions (to make it smaller):

– Each row of W only applies to part of xi.

– Use the same parameters between rows.



Convolutional Neural Networks

• Convolutional Neural Networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.
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Convolutional Neural Networks

• Convolutional Neural Networks classically have 3 layer “types”:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to results of several convolutions.

– Pooling layer: downsamples result of convolution.

• Can add invariances or just make the number of parameters smaller.

• Usual choice is ‘max pooling’:



LeNet for Optical Character Recognition

http://blog.csdn.net/strint/article/details/44163869



Summary

• Convolutions are flexible class of signal/image transformations.

• Max(convolutions) can yield features that make classification easy.

• Convolutional neural networks:

– Restrict W(m) matrices to represent sets of convolutions.

– Often combined with max (pooling).

• Next time: modern convolutional neural networks and applications.

– Image segmentation, depth estimation, image colorization, artistic style.


