
CPSC 340:
Machine Learning and Data Mining

Deep Learning

Fall 2016



Admin

• Assignment 5:

– Due Friday.

• Assignment 6:

– Due next Friday.

• Final:

– December 12 (8:30am – HEBB 100)

– Covers Assignments 1-6.

– Final from last year and list of topics will be posted.

– Closed-book, cheat sheet: 4-pages each double-sided. 



https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

Last Time: Deep Learning



Autoencoders

• Autoencoders are an unsupervised deep learning model:

– Use the inputs as the output of the neural network.

– Middle layer could be latent features in non-linear latent-factor model.

• Can do outlier detection, data compression, visualization, etc.
http://inspirehep.net/record/1252540/plots



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf



• Denosing autoencoders add noise to the input:

– Learns a model that can remove the noise.

Denoising Autoencoder

http://inspirehep.net/record/1252540/plots



Deep Learning Practicalities

• This lecture focus on deep learning practical issues: 

– Backpropagation to compute gradients.

– Stochastic gradient training.

– Regularization to avoid overfitting.

• Next lecture:

– Special ‘W’ restrictions to further avoid overfitting.



Last Time: Backpropagation with 1 Hidden Layer

• Squared loss our objective function with 1 layer and 1 example:

• Gradient with respect to element of vector ‘w’.

• Gradient with respect to element of matrix ‘W’.

• Only ri changes if you aren’t using squared error.



Last Time: Backpropagation with 1 Hidden Layer

• Squared loss our objective function with 1 layer and 1 example:

• Gradient with respect to elements of vector ‘w’ and ‘W’:

• Backpropagation algorithm:

– Forward propagation computes zi = h(Wcxi) then wTzi.

– Backpropagation step 1: use ri to get gradient of ‘w’.

– Backpropagation step 2: use ri and vc to get gradient of ‘W’.



Backpropagation with 2 Hidden Layer

• General objective function with 2 layers and 1 example:

• Gradient with respect to element of vector ‘w’:

• Gradient with respect to element of matrix ‘W(2)’:

• Gradient with respect to element of matrix ‘W(1)’:



Last Time: Backpropagation with 3 Hidden Layers

• General objective function with 3 layers and 1 example:

• Gradients have the form:

• Backpropagation algorithm:
– Forward propagation computes ‘r’ and z(m) for all ‘m’. 

– Backpropagation step 1: use ‘r’ to get gradient of ‘w’.

– Backpropagation step 2: use ac to get gradient of W(3).

– Backpropagation step 3: use bc to get gradient of W(2).

– Backpropagation step 4: use dc to get gradient of W(1).



Last Time: Backpropagation with 3 Hidden Layers

• Backpropagation algorithm:
– Forward propagation computes ‘r’ and z(m) for all ‘m’. 

– Backpropagation step 1: use r to get gradient of ‘w’.

– Backpropagation step 2: use ac to get gradient of W(3).

– Backpropagation step 3: use bc to get gradient of W(2).

– Backpropagation step 4: use dc to get gradient of W(1).

• Cost of backpropagation:
– Forward pass dominated by multiplications by W(1), W(2), W(3), and ‘w’.

• If have ‘m’ layers and all zi have ‘k’ elements, cost would be O(dk + mk2).

– Backward pass has same cost.

• For multi-class or multi-label classification, replace ‘w’ by matrix.
– Softmax loss is called “cross entropy” in neural network papers.



Last Time: ImageNet Challenge

• ImageNet challenge:

– Use millions of images to recognize 1000 objects.

• ImageNet organizer visited UBC summer 2015.

• “Besides huge dataset/model/cluster, what is the most important?”

1. Image transformations (translation, rotation, scaling, lighting, etc.).

2. Optimization.

• Why would optimization be so important?

– Neural network objectives are highly non-convex (and worse with depth). 

– Optimization has huge influence on quality of model.



Stochastic Gradient Training

• Standard training method is stochastic gradient (SG):

– Choose a random example ‘i’.

– Use backpropagation to get gradient with respect to all parameters.

– Take a small step in the negative gradient direction.

• Challenging to make SG work:

– Often doesn’t work as a “black box” learning algorithm.

– But people have developed a lot of tricks/modifications to make it work.

• Highly non-convex, so are the problem local mimina?

– Some empirical/theoretical evidence that local minima are not the problem.

– If the network is “deep” and “wide” enough, we think all local minima are good.

– But it can be hard to get SG to even find a local minimum.



Parameter Initialization

• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• A traditional random initialization:

– Initialize bias variables to 0.

– Sample from standard normal, divided by 105 (0.00001*randn).

– Performing multiple initializations does not seem to be important.

• Popular approach from 10 years ago: 

– Initialize with deep unsupervised model (like autoencoders).



Parameter Initialization

• Parameter initialization is crucial:

– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• Also common to standardize data:

– Subtract mean, divide by standard deviation, “whiten”, standardize yi.

• More recent initializations try to standardize initial zi:

– Use different initialization in each layer.

– Try to make variance of zi the same across layers.

– Use samples from standard normal distribution, divide by sqrt(2*nInputs).

– Use samples from uniform distribution on [-b,b], where



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Common approach: manual “babysitting” of the step-size.

– Run SG for a while with a fixed step-size.

– Occasionally measure error and plot progress:

– If error is not decreasing, decrease step-size.



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• More automatic method is Bottou trick: 

1. Grab a small set of training examples (maybe 5% of total).

2. Do a binary search for a step size that works well on them.

3. Use this step size for a long time (or slowly decrease it from there).

• Several recent methods using a step size for each variable:

– AdaGrad, RMSprop, Adam.



Setting the Step-Size

• Stochastic gradient is very sensitive to the step size in deep models.

• Bias step-size multiplier: use bigger step-size for the bias variables.

• Momentum:

– Add term that moves in previous direction:

• Batch size (number of random examples) also influences results.

• Another recent trick is batch normalization:

– Try to “standardize” the hidden units within the random samples as we go.



Vanishing Gradient Problem

• Consider the sigmoid function:

• Away from the origin, the gradient is nearly zero.

• The problem gets worse when you take the sigmoid of a sigmoid:

• In deep networks, many gradients can be nearly zero everywhere.



Rectified Linear Units (ReLU)

• Replace sigmoid with hinge-like loss (ReLU):

• The gradient is zero or xi, depending on the sign.

– Fixes vanishing gradient problem.

– Gives sparser of activations.

– Not really simulating binary signal, but could be simulating rate coding.



Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:

– As we increase the depth, training error decreases.

– As we increase the depth, training error no longer approximates test error.

• We want deep networks to model highly non-linear data.

– But increasing the depth leads to overfitting.

• How could GoogLeNet use 22 layers?

– Many forms of regularization and keeping model complexity under control.



Standard Regularization

• We typically add our usual L2-regularizers:

• L2-regularization is called “weight decay” in neural network papers.

– Could also use L1-regularization.

• “Hyper-parameter” optimization:

– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.

• Unlike linear models, typically use multiple types of regularization. 



Early Stopping

• Second common type of regularization is “early stopping”:

– Monitor the validation error as we run stochastic gradient.

– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout

• Dropout is a more recent form of regularization:

– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Encourages distributed representation rather than using specific zi.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Convolutional Neural Networks

• Typically use multiple types of regularization:

– L2-regularization.

– Early stopping.

– Dropout.

• Often, still not enough to get deep models working.

• Deep computer vision models are all convolutional neural nets:

– The W(m) are very sparse and have repeated parameters (“tied weights”).

– Drastically reduces number of parameters (speeds up training).



Summary

• Autoencoders are unsupervised neural net latent-factor models.

• Parameter initialization is crucial to neural net performance.

• Optimization and step size are crucial to neural net performance.

• Regularization is crucial to neural net performance:

– L2-regularizaiton, early stopping, dropout.

• Next time:

– Convolutions, convolutional neural networks, and rating selfies.


