CPSC 340: Machine Learning and Data Mining

Decision Trees Fall 2016

Admin

- Assignment 1 is out, due September 23rd.
 - You'll need a CS undergrad account to use Handin:
 - https://www.cs.ubc.ca/getacct
 - It's due after the add/drop deadline but START THIS WEEK.
 - It will give you an idea of the workload/background expected.
- You can get help on Piazza.
 - www.piazza.com/ubc.ca/winterterm12016/cpsc340/home
- Tutorials start today:
 - Monday 4-5 and 5-6, Tueday 4:30-5:30, Wednesday 9-10.
- Office hours:
 - Tuesdays at 2-3 (ICICS 146) and 3:30-4:30 (DLC Table 4), and Wednesdays
 4-5 (ICICS X337).

Last Time: Data Representation and Exploration

- We discussed object-feature representation:
 - Examples: another name we'll use for objects.

We discussed summary statistics and visualizing data. Feature

http://www.statcrunch.com/5.0/viewresult.php?resid=1024581 http://cdn.okccdn.com/blog/humanexperiments/looks-v-personality.png http://www.scc.ms.unimelb.edu.au/whatisstatistics/weather.html

Motivating Example: Food Allergies

• You frequently start getting an upset stomach

• You suspect an adult-onset food allergy.

Motivating Example: Food Allergies

• To solve the mystery, you start a food journal:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	 Sick?
0	0.7	0	0.3	0	0	1
0.3	0.7	0	0.6	0	0.01	1
0	0	0	0.8	0	0	0
0.3	0.7	1.2	0	0.10	0.01	1
0.3	0	1.2	0.3	0.10	0.01	1

- But it's hard to find the pattern:
 - You can't isolate and only eat one food at a time.
 - You may be allergic to more than one food.
 - The quantity matters: a small amount may be ok.
 - You may be allergic to specific interactions.

Supervised Learning

• We can formulate this as supervised learning:

Egg	Milk	Fish	Wheat	Shellfish	Peanuts	•••	Sick?
0	0.7	0	0.3	0	0		1
0.3	0.7	0	0.6	0	0.01		1
0	0	0	0.8	0	0		0
0.3	0.7	1.2	0	0.10	0.01		1
0.3	0	1.2	0.3	0.10	0.01		1

- Input for an object (day of the week) is a set of features (quantities of food).
- Output is a desired class label (whether or not we got sick).
- Goal of supervised learning:
 - Use data to write a program mapping from features to labels.
 - Program predicts whether foods will make you sick (even with new combinations).

Supervised Learning

- With discrete labels, supervised learning is called classification.
 - But we're not particularly interested in food allergies.
- Instead we're interested in studying the concept of supervised learning:
 - Take features of objects and corresponding labels as inputs.
 - Output a program that can predict the label of a generic object.
- This is the most successful machine learning technique:
 - Spam filtering, optical character recognition, Microsoft Kinect, speech recognition, classifying tumours, etc.
- Most useful when:
 - You don't know how to write a program to do the task.
 - But you have input/output examples.
- Today we will learn about one approach:
 - Decision trees.

But first....

- What types of preprocessing might we do?
 - Data cleaning: check for and fix missing/unreasonable values.
 - Summary statistics:
 - Can help identify "unclean" data.
 - Correlation might reveal an obvious dependence ("sick" ⇔ "peanuts").
 - Data transformations:
 - Convert everything to same scale? (e.g., grams)
 - Add foods from day before? (maybe "sick" depends on multiple days)
 - Add date? (maybe what makes you "sick" changes over time).
 - Data visualization: look at a scatterplot of each feature and the label.
 - Maybe the visualization will show something weird in the features.
 - Maybe the pattern is really obvious!
- What you do might depend on how much data you have:
 - Very little data:
 - Represent food by common allergic ingredients (lactose, gluten, etc.)?
 - Lots of data:
 - Use more fine-grained features (bread from bakery vs. hamburger bun)?

Decision Trees

- **Decision trees** are simple programs consisting of:
 - A nested sequence of "if-else" decisions based on the features (splitting rules).
 - A class label as a return value at the end of each sequence.
- Example decision tree:

```
if (milk > 0.5)
    {
        return 'sick'
    }
    else
    {
        if (egg > 1)
            return 'sick'
        else
            return 'not sick'
    }
}
```

Can draw sequences of decisions as a tree:

Decision Tree Learning

- It might be hard to find a good decision tree by hand.
 - There could be a huge number of variables.
 - Sequences of rules might be hard to find.
- Decision tree learning:
 - Use the data to automatically write the decision tree program.
- Basic idea: search over trees for the "best" tree.

Learning A Decision Stump

- We'll start decision stumps:
 - Simple decision tree with 1 splitting rule based on thresholding 1 feature.

- How do we find the best "rule" (i.e., the feature and threshold)?
 - 1. Define a 'score' for the rule.
 - 2. Search for the rule with the best score.

Decision Stump: Accuracy Score

- Most intuitive score: classification accuracy.
 - "If we use this rule, how many objects do we label correctly?"
- Computing classification accuracy for (egg > 1):
 - Find most common labels if we use this rule:
 - When (egg > 1), we were "sick" both times.
 - When (egg <= 1), we were "not sick" three out of four times.
 - Compute accuracy:
 - Rule (egg > 1) is correct on 5/6 objects.
- Scores of other rules:
 - (milk > 0.5) obtains lower accuracy of 4/6.
 - (egg > 0) obtains optimal accuracy of 6/6.
 - () obtains "baseline" accuracy of 3/6, as does (egg > 2).

	Egg	Milk	Fish	•••	Sick?
	1	0.7	0		1
	2	0.7	0		1
_	0	0	0		0
	0	0.7	1.2		0
	2	0	1.2		1
	0	0	0		0

Decision Stump: Rule Search (Attempt 1)

- Accuracy "score" evaluates quality of a rule.
 Find the best rule by maximizing score.
- Attempt 1 (exhaustive search):

Compute score of (egg > 0)	Compute score of (milk > 0)	
Compute score of (egg > 0.01)	Compute score of (milk > 0.01)	
Compute score of (egg > 0.02)	Compute score of (milk > 0.02)	•••
Compute score of (egg > 0.03)	Compute score of (milk > 0.03)	
	•••	
Compute score of (egg > 99.99)	Compute score of (milk > 0.99)	•••

- As you go, keep track of the highest score.
- Return highest-scoring rule.

Cost of Decision Stumps (Attempt 1)

- How much does this cost?
- Assume we have:
 - 'n' objects (days that we measured).
 - 'd' features (foods that we measured).
 - 't' thresholds (>0, >0.01, >0.02,...)
- Computing the score of one rule costs O(n):
 - We need to go through all 'n' examples.
 - If you are not familiar with "O(n)" see notes on webpage.
- To compute scores for d*t rules, total cost is O(ndt).
- Can we do better?

Speeding up Rule Search

- We can ignore rules outside feature ranges:
 - E.g., we never have (egg > 50) in our data.
 - These rules can never improve accuracy.
 - Restrict thresholds to range of features.
- Most of the thresholds give the same score.
 - If we never have (0.5 < egg < 1) in the data,</p>
 - then (egg < 0.6) and (egg < 0.9) have the same score.
 - Restrict thresholds to values in data.

Decision Stump: Rule Search (Attempt 2)

- Attempt 2 (search only over features in data):
 - Compute score of (eggs > 0) Compute score of (eggs > 1) Compute score of (eggs > 2) Compute score of (eggs > 3) Compute score of (eggs > 4)

Compute score of (milk > 0.5)
Compute score of (milk > 0.7)
Compute score of (milk > 1)
Compute score of (milk > 1.25)

...

...

...

...

• • •

- Now at most 'n' thresholds for each feature.
- We only consider O(nd) rules instead of O(dt) rules:
 - Total cost changes from O(ndt) to $O(n^2d)$.

Supervised Learning Notation

• Standard supervised learning notation:

$ \begin{bmatrix} 0 & 0.7 & 0 & 0.3 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0.6 & 0 & 0.01 \\ 0 & 0 & 0 & 0.8 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} $
$ \begin{vmatrix} 0.3 & 0.7 & 0 & 0.6 & 0 & 0.01 \\ 0 & 0 & 0 & 0.8 & 0 & 0 & \sqrt{-1} \end{vmatrix} $
$0 0 0 0.8 0 0 \sqrt{-0}$
0.3 0.7 1.2 0 0.10 0.01 1
0.3 0 1.2 0.3 0.10 0.01 1

- Feature matrix 'X' has rows as objects, columns as features.
 - X_{ii} is feature 'j' for object 'i'.
 - E.g., X_{ii} is quantity of food 'j' on day 'i'.
- Label vector 'y' contains the labels of the objects.
 - $-y_i$ is the label of object 'i'.

Decision Stump Learning Pseudo-Code

Output: an optimal decision stump rule

Decision Stump: Rule Search (Attempt 3)

- Do we have to compute score from scratch?
 - Rule (egg > 1) and (egg > 2) have same decisions, except when (egg == 2).
 - Sort the examples based on 'egg'.
 - Go through the rules in order, updating the score.
- Sorting costs O(n log n) per feature.
- You do at most O(n) score updates per feature.
- Total cost is reduced from O(n²d) to O(nd log n).
- This is a good runtime:
 - O(nd) is the size of data, same as runtime up to a log factor.
 - We can apply this algorithm to huge datasets.

Decision Tree Learning

- Decision stumps have only 1 rule based on only 1 feature.
 - Very limited class of models: usually not very accurate for most tasks.
- Decision trees allow sequences of splits based on multiple features.
 - Very general class of models: can get very high accuracy.
 - However, it's computationally infeasible to find the best decision tree.
- Most common decision tree learning algorithm in practice:
 - Greedy recursive splitting.

Example of Greedy Recursive Splitting

• Start with the full dataset:

Egg	Milk		Sick?
0	0.7		1
1	0.7		1
0	0		0
1	0.6		1
1	0		0
2	0.6		1
0	1		1
2	0		1
0	0.3		0
1	0.6		0
2	0		1

Find the decision stump with the best score:

Split into two smaller datasets based on stump:

Egg	Milk	 Sick?	Egg	Milk	
0	0	0	0	0.7	
1	0	0	1	0.7	
2	0	1	1	0.6	
0	0.3	0	2	0.6	
2	0	1	0	1	
			1	0.6	

Greedy Recursive Splitting

We now have a decision stump and two datasets:

Egg	Milk	•••	Sick?
0	0		0
1	0		0
2	0		1
0	0.3		0
2	0		1

Egg	Milk	•••	Sick?
0	0.7		1
1	0.7		1
1	0.6		1
2	0.6		1
0	1		1
1	0.6		0

Split the leaves by fitting a decision stump to each dataset:

Greedy Recursive Splitting

Splitting the leaves gives a "depth 2" decision tree:

We can then split the training examples into 4 datasets, and recurse on these...

Greedy Recursive Splitting

A "depth 3" decision tree:

Sick

notsick

Typically we continue splitting until:

- The leaves only has one label.
- We reach a user-defined maximum depth.

Discussion of Decision Tree Learning

- Advantages:
 - Interpretable.
 - Fast to learn.
 - Very fast to classify
- Disadvantages:
 - Hard to find optimal set of rules.
 - Greedy splitting uses very simple rules.
 - Unless very deep, greedy splitting often not accurate.
- Issues:
 - Can you revisit a feature?
 - Yes, knowing other information could make feature relevant again.
 - More complicated rules?
 - Yes, but searching for the best rule gets much more expensive.
 - Is accuracy the best score?
 - No, there may no split that increase accuracy. Alternative: information gain.
 - What depth?

Summary

- Supervised learning:
 - using data to write a program based on input/output examples.
- Decision trees: predicting a label using a sequence of simple rules.
- Decision stumps: simple decision tree that is very fast to fit.
- Greedy recursive splitting: uses a sequence of stumps to fit a tree.
 - Very fast and interpretable, but not always the most accurate.
- Next time: the most important ideas in machine learning.

Bonus Slide: Can you re-visit a feature?

• Yes.

Knowing (ice cream > 0.3) makes small milk quantities relevant.

y-eS

Sick

Bonus Slide: Can you have more complicated rules?

• Yes:

• But searching for best rule can get expensive.

Bonus Slide: Which Score Function?

- Shouldn't we just use accuracy score?
 - For leafs: yes, just maximize accuracy.
 - For internal nodes: maybe not.
 - There may be no simple rule like (egg > 0.5) that improves accuracy.
- Most common score in practice: information gain.
 - Choose split that decreases entropy ("randomness") of labels the most.
 - Basic idea: easier to find good rules on "less random" labels.

Bonus Slide: Entropy as Measure of Randomness

• Entropy is measure of "randomness" of a set of variables.

- For discrete data, the uniform distribution has the highest entropy.
- So information gain tries to make labels "more predictable".

Bonus Slide: Probabilistic Predictions

- Often, we'll have multiple 'y' values at each leaf node.
- In these cases, we might return probabilities instead of a label.
- E.g., if in the leaf node we 5 have "sick" objects and 1 "not sick":
 Return p(y = "sick" | x_i) = 5/6 and p(y = "not sick" | x_i) = 1/6.
- In general, a natural estimate of the probabilities at the leaf nodes:
 - Let ' n_k ' be the number of objects that arrive to leaf node 'k'.
 - Let ' n_{kc} ' be the number of times (y == c) in the objects at leaf node 'k'.
 - Maximum likelihood estimate for this leaft is $p(y = c | x_i) = n_{kc}/n_k$.