CPSC 340: Machine Learning and Data Mining

Neural Networks Fall 2016

Admin

- Assignment 4:
 - 3 late days to hand in Monday.
- Assignment 5:
 - Out, due next Friday.
- Assignment 6:
 - Out, due last day of class.
- Final:
 - December 12 (8:30am HEBB 100)
 - Covers Assignments 1-6.
 - Final from last year and list of topics will be posted.
 - Closed-book, cheat sheet: 4-pages each double-sided.

Supervised Learning Roadmap

- Part 1: "Direct" Supervised Learning.
 - We learned parameters 'w' based on the original features x_i and target y_i .
- Part 3: Change of Basis.
 - We learned parameters 'w' based on a change of basis z_i and target y_i .
- Part 4: Latent-Factor Models.
 - We learned parameters 'W' for basis z_i based on only on features x_i .

Wn

Wkd

- You can then learn 'w' based on change of basis z_i and target y_i .
- Part 5: Neural Networks.
 - Jointly learn 'W' and 'w' based on x_i and y_i .
 - Learn basis z_i that is good for supervised learning.

Neural Networks: Introducing Non-Linearity

• Natural choice of neural network regression objective would be:

$$f(w_{y}W) = \frac{1}{2} \sum_{i=1}^{n} (w^{T} z_{i} - y_{i})^{2} = \frac{1}{2} \sum_{i=1}^{n} (w^{T} (W_{x_{i}}) - y_{i})^{2}$$

But we saw last time this gives a linear model.

• Typical fix is to introduce non-linearity 'h':

$$f(w,W) = \frac{1}{2} \sum_{i=1}^{n} (w^{T}h(W_{X_{i}}) - y_{i})^{2} \quad \text{where 'h' has 'd' inputs and 'k' outputs.}$$

Most common choice of 'h' is sigmoid applied to elements of Wx_i.

$$Z_{iC} = \frac{1}{1 + exp(-W_{c} x_{i})}$$

Notation for Neural Networks

Supervised Learning Roadmap

Hand-engineered features: Learn a latent-factor model: Learn 'n' and 'W' together: Neural network: Wal WKd Use latent features "I think this W_n in supervised model: WKS basis will work " (Ki2) (Xi3) ---- (Xid) Wn Wkd But still gives a m3 linear model $(Z_{i2}) \cdots (Z_{ik})$ (\mathbf{x}_{1}) (\mathbf{x}_{2}) (\mathbf{x}_{1}) · - - - (Xid) Good representation of Requires domain knowledge and can be time- consuming Extra non-linear transformation 'h' X; might be bad for predicting y;

Why Sigmoid?

I[Wx >0

 $N_{c X}$

• Consider setting 'h' to define binary features z_i using:

$$Z_{i} = I [W_{c \times_{i}} \ge 0]$$

= $\int I \quad \text{if} \quad W_{c \times_{i}} \ge 0$
 $Z \quad 0 \quad \text{if} \quad W_{c \times_{i}} < 0$

- Vector $z_i = h(Wx_i)$ can be viewed as binary features.
- z_i can take 2^k possible values (combinatorial number of "concepts").
- But non-differentiable and discontinuous so hard to optimize.
- Sigmoid is a smooth approximation to these binary features.

Why "Neural Network"?

• Cartoon of "typical" neuron:

- Neuron has many "dendrites", which take an input signal.
- Neuron has a single "axon", which sends an output signal.
- With the right input to dendrites:
 - "Action potential" along axon (like a binary signal):

Why "Neural Network"?

Why "Neural Network"?

-> Predictions based on aggregation wTh(Wx;) at yi "neuron" -> Synapse between Zik and yi neuron Spinary signal h(Wex;) sent along "axon" $n(z_3)$ $h(z_k)$ - Neuron aggregates signals: W. xi "dendrites" for Zik "neuron" are reciving xij values W_{(l} WKd

"Artificial" Neural Nets vs. "Real" Networks Nets

- Artificial neural network:
 - x_i is measurement of the world.
 - z_i is internal representation of world.
 - y_i is output of neuron for classification/regression.
- Real neural networks are more complicated:
 - Timing of action potentials seems to be important.
 - "Rate coding": frequency of action potentials simulates continuous output.
 - Neural networks don't reflect sparsity of action potentials.
 - How much computation is done inside neuron?
 - Brain is highly organized (e.g., substructures and cortical columns).
 - Connection structure changes.
 - Different types of neurotransmitters.

Deep Hierarchies in the Brain

ttp://www.strokenetwork.org/newsletter/articles/vision.htm ttps://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processir

Neural network:

Deep Learning Linear modeli $y_i = w^7 x_i$ Deep learning $(h(z_{i3}^{(2)}))$ (h(z(2))) h(21) Neural network with I hidden layer: $\gamma_i = w^T h(W_{x_i})$ (Zi3 (Ziz) Zik Neural network with 2 hidden layers Second "layer" $\gamma_i = w^T h(W^{(2)} h(W^{(2)} x_i))$ of latent features $h(z_{i}^{(i)})$ $h(\overline{z_{ik}})$ h(2;2) You can add Neural network with 3 hidden layers more "layers" to $V_{i} = w^{T} h(W^{(3)} h(W^{(2)} h(W^{(2)} x_{i})))$ Z_{jk} go "deeper"

• First layer of z_i trained on 10 by 10 image patches:

- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.
 We'll discuss these next time.

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pc

• First layer of z_i trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse

• First layer of z_i trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pd

• First layer of z_i trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pd

• First layer of z_i trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pd

• First layer of z_i trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pc

- 1950 and 1960s: Initial excitement.
 - Perceptron: linear classifier and stochastic gradient (roughly).
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." w X; New York Times (1958).
 - https://www.youtube.com/watch?v=IEFRtz68m-8

- Then drop in popularity:
 - Quickly realized limitations of linear models.

- 1970 and 1980s: Connectionism (brain-inspired ML)
 - Connected networks of simple units.
 - Use parallel computation and distributed representations.
 - Adding hidden layers z_i increases expressive power.
 - With 1 layer and enough sigmoid units, a universal approximator.
 - Success in optical character recognition.

ttps://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing ttp://www.datarobot.com/blog/a-primer-on-deep-learning/ ttp://blog.csdn.net/strint/article/details/44163869

- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
 - ML moved closer to other fields (CPSC 540):
 - Numerical optimization.
 - Probabilistic graphical models.
 - Bayesian methods.

- Late 2000s: push to revive connectionism as "deep learning".
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
 - Unsupervised successes: "deep belief networks" and "autoencoders".
 - Could be used to initialize deep neural networks.
 - <u>https://www.youtube.com/watch?v=Ku</u>Pai0ogiHk

2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (2012).
 - Changed computer vision field almost instantly
 - This is now finding its way into products.

2010s: DEEP LEARNING!!!

- Media hype:
 - "How many computers to identify a cat? 16,000"

New York Times (2012).

- "Why Facebook is teaching its machines to think like humans" Wired (2013).
- "What is 'deep learning' and why should businesses care?"
 Forbes (2013).
- "Computer eyesight gets a lot more accurate"

New York Times (2014).

• 2015: huge improvement in language understanding.

• Millions of labeled images, 1000 object classes.

Easy for humans but hard for computers.

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/ http://arxiv.org/pdf/1409.0575v3.pdf http://arxiv.org/pdf/1409.4842v1.pdf

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

(b) Eskimo dog

https://ischlag.github.io/2016/04/05/important-ILSVRC-achievements/ http://arxiv.org/pdf/1409.0575v3.pdf http://arxiv.org/pdf/1409.4842v1.pdf

- **Object detection task:** •
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

(b) Eskimo dog

- **Object detection task:** •
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

(b) Eskimo dog

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

(b) Eskimo dog

- Object detection task:
 - Single label per image.
 - Humans: ~5% error.

(a) Siberian husky

- (b) Eskimo dog
- 2015 winner: Microsoft
 - 3.6% error.
 - 152 layers.

Adding a Bias Variable

Remembe that in linear models we
may non-zero y-intercept:

$$y_i = w^T x_i + \beta$$

We can just use $y_i = w^T x_i$ if
 $We fix x_{ij} = 1$ for all 'i' for some j'.
 $(constant x_{ij} value)$

For neural networks we could
have explicit bias:
$$y_i = W'h(Wx_i) + \beta$$

Or we could set
$$W_c = 0$$
 for one
 $I \subset COMMENTE W_c \text{ of 'W'.}$
 $1 + \exp(-W_c x_i) = \frac{1}{1 + \exp(0)} = \frac{1}{2}$
(constant
Zic value)

Artificial Neural Networks

• With squared loss, our objective function is:

$$f(u,W) = \frac{1}{2} \sum_{j=1}^{n} (w^{T}h(Wx_{j}) - y_{j})^{2}$$

- Usual training procedure: stochastic gradient.
 - Compute gradient of random example 'i', update both 'w' and 'W'.
 - Highly non-convex and can be difficult to tune.
- Computing the gradient is known as "backpropagation".

Backpropagation

• Consider the loss for a single example:

$$f(w, W) = \frac{1}{2} \left(\sum_{c=1}^{k} w_c h(W_c \times_i) - y_i \right)^2$$

Element 'c' e' gRow 'c' of W

• Derivative with respect to 'w_c': From squared loss

$$\frac{2}{2} w_{c} \left[f(w, W) \right] = \left(\sum_{c=1}^{k} w_{c} h(W_{c} x_{i}) - y_{i} \right) h(W_{c} x_{i})$$

• Derivative with respect to 'W_{ci}'

we with respect to 'W_{cj}' to we derivative with respect to W_{cj}

$$2W_{cj}[f(w_jW)] = \left(\sum_{c=1}^{k} w_c h(W_c x_i) - y_i\right) W_c h'(W_c x_i) \times_{ij}$$

$$derivative with respect to W_{cxi}$$

Backpropagation

• Notice repeated calculations in gradients:

$$\begin{aligned} & 2 \left[f(w,W) \right] = \left(\sum_{c=i}^{k} w_{c} h(W_{c} x_{i}) - y_{i} \right) h(W_{c} x_{i}) \\ &= r_{i} h(W_{c} x_{i}) \\ &= r_{i} h(W_{c} x_{i}) \\ & 3 \text{ same } r_{i} \text{ for all } c' \end{aligned}$$

$$\begin{aligned} & 2 W_{cj} \left[f(w,W) \right] = \left(\sum_{c=i}^{k} w_{c} h(W_{c} x_{i}) - y_{i} \right) w_{c} h'(W_{c} x_{i}) x_{ij} \\ &= r_{i} v_{c} x_{ij} \\ &= r_{i} v_{c} x_{ij} \end{aligned}$$

Backpropagation

• Calculation of gradient is split into two phases:

["Forward" pass
(a) (ompute
$$h(W_{cx_i})$$
 for all 'c'
(b) (ompute residual $r_i = (\sum_{c=1}^{k} w_{ch}(W_{cx_i}) - y_i)$
2. "Backprogation"
(a) (ompute $2f_{w_c} = r_i h(W_{cx_i})$ for all 'c'
(b) (ompute $v_c = w_c h'(W_{cx_i})$ for all 'c'
(c) (ompute $2f_{w_{cj}} = r_i v_c x_{ij}$ for all 'c' and

1.1

Summary

- Biological motivation for (deep) neural networks.
- Deep learning considers neural networks with many hidden layers.
- Unprecedented performance on difficult pattern recognition tasks.
- Backpropagation computes neural network gradient via chain rule.

- Next time:
 - How deep learners fight the fundamental trade-off.