CPSC 340:
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Neural Networks
Fall 2016



Admin

Assignment 4.

— 3 late days to hand in Monday.
Assignment 5:

— Out, due next Friday.

Assignment 6:

— QOut, due last day of class.

Final:

— December 12 (8:30am — HEBB 100)
— Covers Assignments 1-6.

— Final from last year and list of topics will be posted.
— Closed-book, cheat sheet: 4-pages each double-sided.



Supervised Learning Roadmap

Part 1: “Direct” Supervised Learning.
— We learned parameters ‘w’ based on the original features x, and target y..

Part 3: Change of Basis.
— We learned parameters ‘w’ based on a change of basis z. and target y..

Part 4: Latent-Factor Models.
— We learned parameters ‘W’ for basis z, based on only on features x.. @

\W,,

— You can then learn ‘w’ based on change of basis z; and targety;,. . /7
W,
W

Part 5: Neural Networks.
— Jointly learn ‘W’ and ‘w’ based on x, and y..
— Learn basis z, that is good for supervised learning.



Neural Networks: Introducing Non-Linearity

Natural choice of neural network regression objective would be:
2
RwW)* -?(w 2 y) "“ 2 (w' (Wx) - y)

But we saw last time this g|ves a linear model.
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Typical fix is to introduce non-linearity ‘h’:

N
ClgW)= 5 & (W h(We) =y )" where W hos 4" i ond ' o

2 I / k/}/\/
Most common choice of ‘h’ is;, sigmoid applied to elements of Wx..
Zic =

T+ exp(—We x))



Notation for Neural Networks

We L\owe oW usua’ Su‘oervisml |emrn,'m) no‘/af(onf

[ — ")
1
X ; /7
' J
L  — q P 7" >
n X 4 n yl |
WB L‘G\/e owr 'al)(l’/# “\em‘}msf We hqve t‘LVD 53‘7’5 o‘F rﬂVGM’Cf(fj‘
—_— T — " W _\ W —
2 - E— 22-' —n W- V‘.I/Z W: Wl
; | :
— Zn — - Wi A — Wk -




Supervised Learning Roadmap
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Why Sigmoid?

* Consider setting ‘h’ to define binary features z, using:

Z|= I[WX,ZO] YE—LLMX’20]
-_g: t W20 W,
0 i W <O

— Vector z, = h(Wx;) can be viewed as binary features.
— z, can take 2X possible values (combinatorial number of “concepts”).

* But non-differentiable and discontinuous so hard to optimize.
* Sigmoid is a smooth approximation to these binary features.



Why “Neural Network”?

Dendrite Axon terminal

W I | Mode of
{ Ranvier

Cartoon of “typical” neuron:

Schwann cell

Myelin sheath
Nucleus

Neuron has many “dendrites”, which take an input signal.
Neuron has a single “axon”, which sends an output signal.
With the right input to dendrites: ot
— “Action potential” along axon (like a binary signal):

Voltage (mV)

-55

-70




Why “Neural Network”?

Dendrite Axon terminal
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Why “Neural Network”?
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Why “Neural Network”?
P/eclidiovxs baseJ on aqqregotion 71‘(‘/1/)()
/27 7Lf)9 § [‘/\V ;

]
a yl nfufa’\

/>7 g}/“q'ﬂ}f /oefwecn Zj/l( Omcj )’/

) \
Neuron

lDM(Ny Slyu:fa/ I/\(M/CX,) Sent

°I,on7 AX N
NMewron aggregutes Sigrals: Y .

ncj-enclﬁf‘e)“ ‘POI‘ 2ik ”/'ewm:\

ore recivin7 Xij volues



“Artificial” Neural Nets vs. “Real” Networks Nets

* Artificial neural network:
— X, is measurement of the world.
— z, is internal representation of world.
— y. is output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
e “Rate coding”: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Deep Hierarchies in the Brain
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Deep Learning
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Deep Learning
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Cool Picture Motivation for Deep Learning

Deep Learning learns layers of features
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

o LD AN AN Y

-

e Attempt to visualize second layer: “

— Corners, angles, surface boundaries?

 Models require many tricks to work.
— We'll discuss these next time.



Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:
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* Visualization of second and third layers trained on specific objects:
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

o LD AN AN Y

* Visualization of second and third layers trained on specific objects:

faces cars elephants




Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

] BN ANV P

* Visualization of second and third layers trained on specific objects:

faces cars elephants chairs
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Cool Picture Motivation for Deep Learning

* First layer of z, trained on 10 by 10 image patches:

] BN ANV P

* Visualization of second and third layers trained on specific objects:

faces cars elephants chairs faces, cars, airplanes, motorbikes




ML and Deep Learning History

Perceptrons

1950 and 1960s: Initial excitement.
— Perceptron: linear classifier and stochastic gradient (roughly).

— “the embryo of an electronic computer that [the Navy] expects will be able
to walk, talk, see, write, reproduce itself and be conscious of its existence.” w'X,'
New York Times (1958).

* https://www.youtube.com/watch?v=IEFRtz68m-8

* Then drop in popularity:

— Quickly realized limitations of linear models.



https://www.youtube.com/watch?v=IEFRtz68m-8

ML and Deep Learning History

e 1970 and 1980s: Connectionism (brain-inspired ML)

— Connected networks of simple units.

e Use parallel computation and distributed representations.

— Adding hidden layers z, increases expressive power.

* With 1 layer and enough sigmoid units, a universal approximator.

— Success in optical character recognition.
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ML and Deep Learning History

* 1990s and early-2000s: drop in popularity.

— It proved really difficult to get multi-layer models working robustly.

— We obtained similar performance with simpler models:

e Rise in popularity of logistic regression and SVMs with regularization and kernels.

— ML moved closer to other fields (CPSC 540):

 Numerical optimization.
* Probabilistic graphical models.
* Bayesian methods.



ML and Deep Learning History

* Late 2000s: push to revive connectionism as “deep learning”.
— Canadian Institute For Advanced Research (CIFAR) NCAP program:
* “Neural Computation and Adaptive Perception”.
* Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio (“Canadian mafia”).
— Unsupervised successes: “deep belief networks” and “autoencoders”

* Could be used to initialize deep neural networks.
* https://www.youtube.com/watch?v=KuPaiOogiHk
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https://www.youtube.com/watch?v=KuPai0ogiHk

2010s: DEEP LEARNING!!!

* Bigger datasets, bigger models, parallel computing (GPUs/clusters).
— And some tweaks to the models from the 1980s.

 Huge improvements in automatic speech recognition (2009).
— All phones now have deep learning.

 Huge improvements in computer vision (2012).
— Changed computer vision field almost instantl' gy ‘
— This is now finding its way into products. e R, [Person




2010s: DEEP LEARNING!!!

* Media hype:

— “How many computers to identify a cat? 16,000”
New York Times (2012).

— “Why Facebook is teaching its machines to think like humans”
Wired (2013).

— “What is ‘deep learning’ and why should businesses care?”
Forbes (2013).

— “Computer eyesight gets a lot more accurate”
New York Times (2014).

e 2015: huge improvement in language understanding.



ImageNet Challenge

* Millions of labeled images, 1000 object classes.
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ImageNet Challenge

* Object detection task:

Image classification
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ImageNet Challenge

* Object detection task: Ilmage classification
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ImageNet Challenge

* Object detection task:
— Single label per image.

Classification error
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ImageNet Challenge

* Object detection task: Ilmage classification
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* Object detection task:
— Single label per image.
— Humans: ~5% error.

(a) Siberian husky
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ImageNet Challenge
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ImageNet Challenge

Object detection task:
— Single label per image.

Image classification
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Adding a Bias Variable

RGMem\oe 'n‘an N linear Moiels wé

VV\«\/ non” z o[ )I“‘[Vlfvfc{'o'l:

ym ot

Fof l\eu{ml r\e{(/\«ofkﬁ vve COWU

In ave exr 'lc'ﬂL Llals"

y= w h(We)+p

Wé C on \')vs"' USe \/i:WTX.' if

we Tix X:f) for ol !

(comdanf

‘(:a/ some 3"

Xi)’ V«’Vc’)

Or we (o] et W. =0 {or one

6L ﬁm&ﬂ»\/\/C of ‘W
)

S l

o~

’ + Oxf(" W,x) |+ oyf( 0)

|
3/

( C Or\d av\‘/

2ic Vol‘hc)



Artificial Neural Networks
* With squared loss, our objective function is:
(W)= ‘212 (w" h(Wx) =)

* Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update both ‘w’ and ‘W’.
— Highly non-convex and can be difficult to tune.

 Computing the gradient is known as “backpropagation”.



Backpropagation

* Consider the loss for a single example:
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Backpropagation

* Notice repeated calculations in gradients:
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Backpropagation

e Calculation of gradient is split into two phases:
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Summary

Biological motivation for (deep) neural networks.

Deep learning considers neural networks with many hidden layers.
Unprecedented performance on difficult pattern recognition tasks.
Backpropagation computes neural network gradient via chain rule.

Next time:
— How deep learners fight the fundamental trade-off.



