CPSC 340: Machine Learning and Data Mining

More PCA Fall 2016

Admin

- A2/Midterm:
 - Grades/solutions posted.
 - Midterms can be viewed during office hours.
- Assignment 4:
 - Due Monday.
- Extra office hours:
 - Thursdays from 4:30-5:30 in ICICS X836.

1. Decision trees

- 2. Naïve Bayes classification
- 3. Ordinary least squares regression
- 4. Logistic regression
- 5. Support vector machines
- 6. Ensemble methods
- 7. Clustering algorithms
- 8. Principal component analysis
- 9. Singular value decomposition
- 10. Independent component analysis

The 10 Algorithms Machine Learning Engineers Need to Know

Last Week: Principal Component Analysis (PCA)

- PCA is a linear model for unsupervised learning.
- Represents features as linear combination of latent factors:

 $X_{ij} = W_j^T z_i \qquad X_j = W^T z_j = z_{i1} W_1 + z_{i2} W_2 + \dots + z_{ikk}$ - But we're learning the latent factors 'W' and latent features z_i .

- But we're learning the latent factors 'W' and latent reactives z_1 . • Can also be viewed as an approximate matrix factorization: $X \approx ZW$ $K \approx ZW$

$$\begin{bmatrix} n \times d \end{bmatrix} \approx \begin{bmatrix} n \times d \end{bmatrix} \approx \begin{bmatrix} n \times d \end{bmatrix}$$

Last Week: Principal Component Analysis (PCA)

- PCA is a linear model for unsupervised learning.
- Represents features as linear combination of latent factors:

$$\mathbf{x}_{ij} = \mathbf{w}_j^{\mathsf{T}} \mathbf{z}_i \qquad \qquad \mathbf{x}_j = \mathbf{W}^{\mathsf{T}} \mathbf{z}_j$$

• Uses: dimensionality reduction, visualization, factor discovery.

Trait	Description
Openness	Being curious, original, intellectual, creative, and open to new ideas.
Conscientiousness	Being organized, systematic, punctual, achievement- oriented, and dependable.
Extraversion	Being outgoing, talkative, sociable, and enjoying social situations.
Agreeableness	Being affable, tolerant, sensitive, trusting, kind, and warm.
Neuroticism	Being anxious, irritable, temperamental, and moody.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html https://new.edu/resources/big-5-personality-traits

Last Week: Principal Component Analysis (PCA)

- PCA is a linear model for unsupervised learning.
- Represents features as linear combination of latent factors:

$$X_{ij} = w_j^{T} z_i \qquad \qquad X_i = W^{T} z_i$$

• Uses: dimensionality reduction, visualization, factor discovery.

Maximizing Variance vs. Minimizing Error

- Our "synthesis" view that PCA minimizes approximation error.
 - Makes connection to k-means and our tricks for linear regression.

Classic "analysis" view: PCA maximizes variance in z_i space.
 You pick 'W' to explain as much variance in the data as possible.

Choosing Number of Latent Factors

- Common approach to choosing 'k': Compute error with k=0: $\|\chi\|_{F}^{2} = n * var(x_{ij})$ (remember that is in the columns have mean of zero

– Compare to error with non-zero 'k':

$$\frac{||ZW - X||_{F}^{2}}{||X||_{F}^{2}}$$

- Gives a number between 0 and 1, giving how much "variance remains".
 - If you want to explain 90% of variance, choose smallest 'k' where ratio is < 0.10.

PCA Computation

• The PCA objective with general 'd' and 'k':

$$f(W_{J}Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (w_{j}^{T}z_{i} - x_{ij})^{2} = ||ZW - X||_{F}^{2}$$

- 3 common ways to solve this problem:
 - Singular value decomposition (SVD) classic non-iterative approach.
 - Alternating between updating 'W' and updating 'Z'.

 $\nabla_{W} f(W_{2}) = 2^{T} Z W - Z^{T} X$ (writing gradient as a matrix) $W = (Z^{T} Z)^{T} (Z^{T} X)$ and similarly $\nabla_{Z} f(W_{1} Z) = Z W W^{T} - X W^{T} s O$ $Z = X W^{T} (W W^{T})^{T}$

- Stochastic gradient: gradient descent based on random 'i' and 'j'.
 - (Or just plain gradient descent).
- Not convex, all these methods work with random initialization.

PCA Computation

• The PCA objective with general 'd' and 'k':

$$f(W_{j}Z) = \sum_{i=1}^{n} \sum_{j=1}^{d} (w_{j}^{T}z_{i} - x_{ij})^{2} = ||ZW - X||_{F}^{2}$$

- Where we've subtracted mean μ_i from each feature.
- At test time, to find optimal 'Z' given 'W' for new data:

Given factors 'W' and test data
$$\hat{X}^{:}$$

Subtract training mean M_{j} for each feature 'j': $\hat{x}_{i} \in \hat{x}_{i} - M$
Solve for 'Z' given 'W': $Z = \hat{X} W^{T} (WW^{T})^{-1}$
(If $k = 1$ then $Z_{i} = \frac{W_{c}^{T} x_{i}}{W_{c}^{T} W_{c}}$)

PCA Non-Uniqueness

• We have the scaling problem:

 $\left(\frac{1}{\alpha}Z\right)(\alpha W) = ZW$

A standard fix: require that $||w_c|| = |$ for all factors 'c'. Le row 'c' of 'W'

PCA Non-Uniqueness

Orthogonality when d=2

- But with multiple PCs, we have new problems:
 - Factors could be non-orthogonal (components interfere with each other):

For d=2 and k=2 an optimal solution is $W = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 1 \end{bmatrix}$ factors are almost identical we could equivalently take $W = \begin{bmatrix} 1 & 0.99 \\ 0.99 & 1 \end{bmatrix}$ factors: $W_c = 0$ when $c = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ The standard fix is requiring orthogonal factors: $W_c = 0$ when c = c' Very interpretable

- You can still "rotate" the factors and also have label switching.
 - A fix is to fit the PCs sequentially (can be done with SVD approach): 1. Find "first" PC We that minimizes $\|zw_{c}^{T} - X\|_{F}^{2}$ (PCA with k=1) 2. Fix "first" PC w, and find We minimizing $\|ZW - X\|_{F}^{2}$ where $W_{1}^{T}w_{c} = 0$ 3. Fix "first" and "second" PC and find we with $w_{1}^{T}w_{c} = 0$ and $w_{2}^{T}w_{c} = 0$

— optimal solution with one PC Xiz Χ_i Λ

c optimal solution
with one PC
("first" PC) Xiz X_i optimal solution that is or thogonal to "first" PC (sequential fitting of PCs makes directions unique)

http://setosa.io/ev/principal-component-analysis

Do need all this math?

Colour Opponency in the Human Eye

- Classic model of the eye is with 4 photoreceptors:
 - Rods (more sensitive to brightness).
 - L-Cones (most sensitive to red).
 - M-Cones (most sensitive to green).
 - S-Cones (most sensitive to blue).
- Two problems with this system:
 - Correlation between receptors (not orthogonal).
 - Particularly between red/green.
 - We have 4 receptors for 3 colours.

Colour Opponency in the Human Eye

- Bipolar and ganglion cells seem to code using "opponent colors":
 - 3-variable orthogonal basis:

• This is similar to PCA (d = 4, k = 3).

http://oneminuteastronomer.com/astro-course-day-5/ https://en.wikipedia.org/wiki/Color_visio http://5sensesnews.blogspot.ca/

Application: Face Detection

• Consider problem of face detection:

- Classic methods use "eigenfaces" as basis:
 - PCA applied to images of faces.

https://developer.apple.com/library/content/documentation/GraphicsImaging/Conceptual/CoreImaging/ci_detect_faces/ci_detect_faces.html

• Collect a bunch of images of faces under different conditions:

Compute mean
$$M_j$$
 of each column. Each row of X will be pixels in one image:

$$X = \begin{bmatrix} x_1 - M \\ x_2 - M \\ \vdots \\ \vdots \\ y_n - M \end{bmatrix}$$
Replace each x_{ij} by $x_{ij} - M_j$

Compute top 'k' PCs on centered duta:

"Eigenface" representation:

+.. $+Z_{il}$ +2i2 +Ziz PC3 PC2 PCI (first row of W) M

"Eigenface" representation:

Reconstruction with K=0

Variance explained: 0%

"Eigenface" representation + Z_{il} / + Ziz + Zi2 4.. 1 PC3 PC2 PCI (first row of W) \mathcal{M} Xi

+..

Eigenfaces Reconstruction with K=2 3000 2000 1000 PCA Visualization -1000 -2000 -3000 ()--> -4000 3000 4000 "Eigenface" representation: $+Z_{il}$ + z_{i2} / +Ziz \leq PC3 Variance explained: 71% PC2 PCI \mathcal{M} Xi (first row of W,

4..

Reconstruction with K=3 PCA Visualization Variance explained: 76%

1000 500 0 -500 -1000 -1500 -4000 2000 4000 3000 2000 1000 0 -2000 -1000 -2000 -3000 -4000

"Eigenface" representation:

 $+Z_{il}$ + Zi2 +2i3 +.. \leq PC3 PCI (first row of W) PC2 M Xi

Reconstruction with K=5

Variance explained: 86°/0

Reconstruction with K=10

Variance explained: 85%

Reconstruction with K=21

Variance explained: 90°/0

Reconstruction with K=54

Variance explained: 95%

the

We can replace 1024 xi values by 54 z; values

Representing Faces

But how *should* we represent faces?

- K-means:
 - 'Grandmother cell': one neuron = one face.
 - Almost certainly not true: too few neurons.

• PCA:

- "Distributed representation".
 - Coded by pattern of group of neurons.
 - Can represent more concepts.
- But PCA uses positive/negative cancelling parts.
- Non-negative matrix factorization (NMF):
 - Latent-factor where W and Z are non-negative.
 - Example of "sparse coding":
 - Coded by small number of neurons in group.
 - NMF makes object out of of 'parts'.

http://www.columbia.edu/~jwp2128/Teaching/W4721/papers/nmf_nature.pdf

Oriainal

Representing Faces

- Why sparse coding?
 - 'Parts' are intuitive, and brains seem to use sparse representation.
 - Energy efficiency if using sparse code.
 - Increase number of concepts you can memorize?

Summary

- Analysis view of PCA is that it maximizes variance.
 - We can choose 'k' to explain x% of the variance in the data.
- Orthogonal basis and sequential fitting of PCs:
 - Leads to non-redundant PCs with unique directions.
- Biological motivation for orthogonal and/or sparse latent factors.
- Non-negative matrix factorization leads to sparse LFM.
- Next time: modifying PCA so it splits faces into 'eyes', 'mouths', etc.