CPSC 340:
Machine Learning and Data Mining

Principal Component Analysis
Fall 2016

Admin

 A2/Midterm:
— Grades/solutions will be posted after class.

* Assignment 4:
— Posted, due November 14.

e Extra office hours:
— Thursdays from 4:30-5:30 in ICICS X836.

Last Time: MAP Estimation

MAP estimation maximizes posterior

Xyw) (w

P%’rernor "like “’"’OJ (mw
Likelihood measures probability of labels ‘y’ given parameters ‘w’.
Prior measures probability of parameters ‘w’ before we see data.

For IID training data and independent prior, equivalent to using:
¥<w> - 322' '03 (F(Y' ’x’-)w)) “ é ,mj (P(WJ»

So log-likelihood is an error function, and log-prior is a regularizer.
— Squared error comes from Gaussian likelihood.
— L2-regularization comes from Gaussian prior.

Multi-Class Classification

* For binary classification with linear models we use:
yl- = Sicjn(wjx,)
* For multi-class classification with linear models we use:
Vi= argmar sy, xS

— Where we have a vector w_ for each class ‘c’.

W=l 5]

* To jointly estimate the w_, we can use softmax likelihood:

p(%’c,;"i;V‘D &XP(WL %)
ZQXPCW X)

Multi-Class Classification

 For multi-class classification with linear models we use:
= Ma 1
\/I O\f()c/ X iwc X}?
* To jointly estimate the w_, we can use softmax likelihood:
(lx,) \/l/)_ exF(wy‘ X)
i ze,(o)

* By taking the negative Iog and addmg a regularizer, we get:

I< CL
£(w)= f[s, + log(2 exp(wn)] + 3220
k—’—\f") Y
Tees To P Ao > maxfe'x§ L\@;«/ Lo~ e

VV\Q’(Q W Xi l_o_% ‘For 50 1-((.95 .h? f\'\uke WLTX" $LM”
The COT[Q(’* \o\\oe, ‘FO('Md (alae‘j

on e’ew«ufs of 'W‘

Digression: Frobenius Matrix Norm

\/V& Can werile fg N matiy potation as “W”;-?

l'\y-'

The notation JIWlle is the "Frobenis" horm of matey W:
\Wilg = if

=1 j=!

(le\”r”‘ it we stack” Columns of W' Nt O Ll}' Vec+af>

End of Part 3: Key Concepts

* Linear models base predictions on linear combinations of features:
WTXi = wx, % w, kg vy Xy
* We model non-linear effects using a change of basis:
— Replace x; with z. and use w'z..
— Examples include polynomial basis and (non-parametric) RBFs.

* Regression is supervised learning with continuous labels.

— Logical error measure for regression is squared error:

() = -;“)(w‘y”l

— Can be solved as a system of linear equations.

End of Part 3: Key Concepts

* We can reduce over-fitting by using regularization:

() = 3 =y I+ 2

e Squared error is not always right measure:
— Absolute error is less sensitive to outliers.
— Logistic loss and hinge loss are better for binary y..
— Softmax loss is better for multi-class y..

* MLE/MAP perspective:

— We can view loss as log-likelihood and regularizer as log-prior.
— Allows us to define losses based on probabilities.

End of Part 3: Key Concepts

Gradient descent finds local minimum of smooth objectives.
— Converges to a global optimum for convex functions.
— Can use smooth approximations (Huber, log-sum-exp)

Stochastic gradient methods allow huge/infinite ‘n’.
— Though very sensitive to the step-size.

Kernels let us use similarity between examples, instead of features.

— Let us use some exponential- or infinite-dimensional features.

Feature selection is a messy topic.
— Classic methods are hypothesis testing and search and score.
— L1-regularization simultaneously regularizes and selects features.

The Story So Far...

Supervised Learning Part 1:

— Methods based on counting and distances.
Unsupervised Learning Part 1:

— Methods based on counting and distances.
Supervised Learning Part 2:

— Methods based on linear models and gradient descent.

Unsupervised Learning Part 2:
— Methods based on linear models and gradient descent.

Unsupervised Learning Part 2

 Unsupervised learning:
— We only have x. values, but no explicit target labels.
— You want to do ‘something’ with them.

 Some unsupervised learning tasks:
— Clustering: What types of x, are there?
— Outlier detection: Is this a ‘normal’ x,?
— Association rules: Which x;; occur together?
— Latent-factors: What ‘parts’ are the x, made from?
— Data visualization: What does the high-dimensional X look like?
— Ranking: Which are the most important x.?

Motivation: Vector Quantization

e Recall using k-means for vector quantization:
— Run k-means to find a set of “means” w..
— This gives a cluster c. for each object V"
— Replace features x; by mean of cluster: X. 22 W,

F v Ay P v
. L i A v
v ow
A
Y A

Motivation: Vector Quantization

* We can write vector quantization as a linear model:
— Define ‘z” as a binary vector that is zero except in position c..

TP k=4 and ¢;=3 tuen 2;:[3]

— Our weird notation for mean matrix ‘W’: 0

W We,—— _’ Welf mo+a1 lon a,pr'f

- _“W.‘-N -

Kk %4 1 V"l Wz f 'S row ¢ of W
L——\,VL_/ —VV s (o,www\ C O‘PW

Each row s a mean. € ach tolumh is Fcaf%)
for each meun .

- 1 =
‘M 2
sz,- 1 L T
So Wci;' 2 "W 2; So vec'for quqmilzcﬂlow wseS Xisc"v V‘{) Z W\J)(i’VWZ,'

i

Regression View of K-Means

* Recall that we said k-means minimizes the objective: : !
cach row Was

'?(W ('> Z Z (W ,)>l | non=zero

lld'

* In our new notation, we can write k-means as minimizing: ([—; —
2 hee 2|2
P(W,2)= 2% (wia =)t Whe 2775
=1)= |

— 2,

* We can view this as solving ‘d’ regression problems:
— Each w; is trying to predict column ‘J" of °X” from the basis z,.
— But we're also trying to learn the basis z..

Principal Component Analysis (PCA)

* Principal component analysis (PCA) minimizes the same objective:
2
f(W2)= 2)5 (w'2 =)
— But instead of “1 of k” binary z, we allow a continuous basis z..
e Called a latent-factor model:

— Instead of means, wcﬁcalled “factors” or “principal components”.
— The z; are called “factor loadings” or “low-dimensional basis”.

* The z, say how to mix the means/factors to approximate example ‘i’

\A/c cfgﬂ“f busf arrrox,'mqff X).J. Ly e/emm'/ /J" owp CluS'Ilf/ méun \/Vo',

W . . ’
€ A porinfo)(,*)-"'t as ‘mr combinglr of OL/ Mfams/ﬁdmm@ ' X,':\/Al: Wi, 25,+h§22;24"’+\«5k2,,<
a fafiflm /j\

Principal Component Analysis (PCA)

* Principal component analysis (PCA) in matrix notation:

n d
- T_ — v.)\
{(WQ?*?%(WJ 2 = X;)
n d 2
= ZZ("‘S’:ZN +v322;2+"~*\4<3,(2;,(-Y‘J')

= § | W'z = x/?
= |lzw - XIIi?

e Also called a matrix factorization model: "d nxk kx4

X~ 2ZW

PCA Applications

 PCA has been reinvented many times:

PCA was invented in 1901 by Karl F'earsanr[” as an analogue of the principal axis theorem in
mechanics; it was later independently developed (and named) by Harold Hotelling in the
1930s Depending on the field of application, it 1s also named the discrete Kosambi-
Karhunen—Loéve transform (KLT) in signal processing, the Hotelling transform in multivanate
quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular
value decomposition (SVD) of X (Golub and Van Loan, 1983), eigenvalue decomposition
(EVD) of XX in linear algebra, factor analysis (for a discussion of the differences between
PCA and factor analysis see Ch. 7 of [3]), Eckart—Young theorem (Harman, 1960), or Schmidt

standard deviation of 3 in roughly the
(0.878, 0.478) direction and of 1 in th
orthogonal direction. The vectors
shown are the eigenvectors of the
covariance matnx scaled by the squa
root of the corresponding eigenvalue.
and shifted so their tails are at the
mean.

—Mirsky theorem in psychometrics, empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction

decomposition (Sirovich, 1987), empincal component analysis (Lorenz, 1956), quasiharmonic modes (Brooks et al_, 1988), spectral

decomposition in noise and vibration, and empirical modal analysis in structural dynamics.

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
* If k << d, then compresses data.
* Much better approximation than vector quantization.

~) ﬁjl’_ W

X /f:m\z ~—

PCA Applications

* Applications of PCA:

— Dimensionality reduction: replace ‘X’ with lower-dimensional Z’.
* If k << d, then compresses data.
* Much better approximation than vector quantization.

— Outlier detection: if PCA gives poor approximation of x,, could be ‘outlier”.

* Though due to squared error PCA is sensitive to outliers.

— Partial least squares: uses PCA features as basis for linear model.
COMPW{Q C!/)fro)()MQ7’bﬂ X ~ ZW

/Vo«v Z as ‘Fea’rwes N o ,mear moc[elf

>II W 7-|
Q 5'("‘0":4 ,_-J L/IOWPF O'IMQI\.S:OY\GJ ‘H\GV\ 0f|9lV\a,](\eqfwﬁd S0 le}f M’F#‘)
ramed for r €9f¢’$5‘°/\

PCA Applications

* Applications of PCA:
— Data visualization: plot z; with k = 2 to visualize high-dimensional objects.

French + v
Spanish >
Slovak
German
Beigium =
Czech ©

UK
Hungarnan
Polish
E Romanian v
Norway ¥
Sweden ©
Russian ¢
CEU ©

-

|

>

Component 2 (0.08% variance)

Component 1 (0.21% variance)

2i

PCA Applications

* Applications of PCA:

— Data interpretation: we can try to assign meaning to latent factors w..

 Hidden “factors” that influence all the variables.

Trait Description

Being curious, original, intellectual, creative, and open to

Openness ;
B new ideas.

Being organized, systematic, punctual, achievement-

Conscientiousness oriented, and dependable.

Being outgoing, talkative, sociable, and enjoying

Extraversion social situations.

Being affable, tolerant, sensitive, trusting, kind,

Agreeableness T Lo

Neuroticism Being anxious, irritable, temperamental, and moody.

PCA with d=1

e Consider the case of PCA when d=1:

= ~
n
S z= W=l flzw)= Z (w2 ~x)
L B J =
n x| n =l

* There is an obvious solution: w =1 and z, = x..
— PCA is only interested when k < d, since otherwise we can set z, = x..
* PCAis notunique: w=1/a and z = ax, for any ‘a’ is a solution.
— We can enforce |w| =1 to avoid this problem.

PCA with d=2 and k =1

* So simplest interesting case is d=2 and k=1:

—

-
2=

YE

L

nx Y

(=1
* Very similar to a least squares problem, but note that:

P(A OLJ cc"'.‘/ﬁ:

- - ()
W= | XZJ n 2 2
- ﬂi ' lhc'f"' Mg " 1=)rl
nxl NCW :Fé’ \/W?\ r N 2 n) 2
o exq:}o/e 0 = 2 (Wl 4 -X") : j:g. (W2 i y")

— We have no ‘y;, we are trying to predict each feature x; from the single z,.

— But feaures ‘z” are also variables, we are learning the features z, too.

PCA with d=2 and k =1

LQ Qs S ?V\G/‘tS Pf‘imcif)q, C omPonen+ ofnqus;s \/1//::&,;1%67’”’?7

/ Peatuves
Xiz |

£
cL'tS'fq nce

A

We on_'y_ Care
c'\l’f)vn"' ‘)NJIC’/«) }’i

We care eS(v.g,I/y L
Aot rrejichnc, bath € PCA Wl"hﬂ.'\Zf’S
Feaf ures Or h‘"jof\m/ distomnce,

PCA with d=2 and k =1

Priﬂcif)a, COMponm‘} 0‘"“’}/535

P CA minmizes
I/(Dr‘ h\ojonml ! J) }DW\CP,

PCA with d=2 and k =1

Pfiﬂcipq, COMPon€n+ o\’ﬂq[ysis

N"/cﬂle L,-/q
L/\

Lii’iiL

A A 5*() ' R
\.Y l /PWJtCT\
OmLo /‘/'n,
e e **___.t.)‘—-}-* ‘Zl

/(._2,' Can be inferfyd‘fl

pes iion aloi%“-c ine ; (‘}W"“J a 24 PCA minimizes

proolom by o |4 /""L"‘«) ,/Or“ojw‘o'l " difomnce

PCA with d=2 and k =1

EXamr’c" ;\Bic) U/lmzi?lq‘f 6t Childen:

hesys

J
La%@m‘/ ‘rac)ldr (ov.u Le

rom as measue of iz

PCA Computation

 The PCA objective with general ‘d” and ‘k’:
n d
_ 5 _ 2
f(w2)= Z 2 (w2 = x))
3 common ways to solve this problem:

— Singular value decomposition: classic non-iterative approach (bonus slide).

— Alternating minimization:
1. Start with random initialization.
2. Optimize ‘W’ with ‘Z’ fixed (solve gradient with respect to ‘W’ equals to 0).
3. Optimize ‘2’ with ‘W’ fixed (solve gradient with respect to ‘Z’ equals to 0).
4. Go backto 2.

— Stochastic gradient: gradient descent based on random ‘i’ and .

PCA Non-Convexity

 The PCA objective with general ‘d” and ‘k’:
n d
_ ¥ 2
w2)= ,f)f(m 2i = %)
* This objective is not jointly convex in ‘W’ and ‘Z’.

— This is why iterative methods need random initialization.

* If you initialize with z1 = z2, then they stay the same.

— But it’s possible to show that all “stable” local optima are global optima.

* So alternating minimization and stochastic gradient give global optima in practice.

Summary

* Latent-factor models:
— Compress data as linear combination of ‘factors’.

* Principal component analysis:

— Most common variant based on squared reconstruction error.

* Next time: modifying PCA so it splits faces into ‘eyes’, ‘mouths’, etc.

Bonus Slide: PCA with Singular Value Decomposition

* Under constraints that w_'w_=1 and w_'w_ = 0, use:

Ui\/ = SV X>
W- VG k)T 2T KW

* You can also quickly get compressed version of new data:
N N
_ T
=AW

* |If W was not orthogonal, could get Z by least squares.

