
CPSC 340:
Machine Learning and Data Mining

Principal Component Analysis

Fall 2016

Admin

• A2/Midterm:

– Grades/solutions will be posted after class.

• Assignment 4:

– Posted, due November 14.

• Extra office hours:

– Thursdays from 4:30-5:30 in ICICS X836.

Last Time: MAP Estimation

• MAP estimation maximizes posterior:

• Likelihood measures probability of labels ‘y’ given parameters ‘w’.

• Prior measures probability of parameters ‘w’ before we see data.

• For IID training data and independent prior, equivalent to using:

• So log-likelihood is an error function, and log-prior is a regularizer.
– Squared error comes from Gaussian likelihood.

– L2-regularization comes from Gaussian prior.

Multi-Class Classification

• For binary classification with linear models we use:

• For multi-class classification with linear models we use:

– Where we have a vector wc for each class ‘c’.

• To jointly estimate the wc, we can use softmax likelihood:

Multi-Class Classification

• For multi-class classification with linear models we use:

• To jointly estimate the wc, we can use softmax likelihood:

• By taking the negative log and adding a regularizer, we get:

Digression: Frobenius Matrix Norm

End of Part 3: Key Concepts

• Linear models base predictions on linear combinations of features:

• We model non-linear effects using a change of basis:

– Replace xi with zi and use wTzi.

– Examples include polynomial basis and (non-parametric) RBFs.

• Regression is supervised learning with continuous labels.

– Logical error measure for regression is squared error:

– Can be solved as a system of linear equations.

End of Part 3: Key Concepts

• We can reduce over-fitting by using regularization:

• Squared error is not always right measure:

– Absolute error is less sensitive to outliers.

– Logistic loss and hinge loss are better for binary yi.

– Softmax loss is better for multi-class yi.

• MLE/MAP perspective:

– We can view loss as log-likelihood and regularizer as log-prior.

– Allows us to define losses based on probabilities.

End of Part 3: Key Concepts

• Gradient descent finds local minimum of smooth objectives.

– Converges to a global optimum for convex functions.

– Can use smooth approximations (Huber, log-sum-exp)

• Stochastic gradient methods allow huge/infinite ‘n’.

– Though very sensitive to the step-size.

• Kernels let us use similarity between examples, instead of features.

– Let us use some exponential- or infinite-dimensional features.

• Feature selection is a messy topic.

– Classic methods are hypothesis testing and search and score.

– L1-regularization simultaneously regularizes and selects features.

The Story So Far…

• Supervised Learning Part 1:

– Methods based on counting and distances.

• Unsupervised Learning Part 1:

– Methods based on counting and distances.

• Supervised Learning Part 2:

– Methods based on linear models and gradient descent.

• Unsupervised Learning Part 2:

– Methods based on linear models and gradient descent.

Unsupervised Learning Part 2

• Unsupervised learning:

– We only have xi values, but no explicit target labels.

– You want to do ‘something’ with them.

• Some unsupervised learning tasks:

– Clustering: What types of xi are there?

– Outlier detection: Is this a ‘normal’ xi?

– Association rules: Which xij occur together?

– Latent-factors: What ‘parts’ are the xi made from?

– Data visualization: What does the high-dimensional X look like?

– Ranking: Which are the most important xi?

Motivation: Vector Quantization

• Recall using k-means for vector quantization:

– Run k-means to find a set of “means” wc.

– This gives a cluster ci for each object ‘i’.

– Replace features xi by mean of cluster:

Motivation: Vector Quantization

• We can write vector quantization as a linear model:

– Define ‘zi’ as a binary vector that is zero except in position ci.

– Our weird notation for mean matrix ‘W’:

Regression View of K-Means

• Recall that we said k-means minimizes the objective:

• In our new notation, we can write k-means as minimizing:

• We can view this as solving ‘d’ regression problems:

– Each wj is trying to predict column ‘j’ of ‘X’ from the basis zi.

– But we’re also trying to learn the basis zi.

Principal Component Analysis (PCA)

• Principal component analysis (PCA) minimizes the same objective:

– But instead of “1 of k” binary zi we allow a continuous basis zi.

• Called a latent-factor model:

– Instead of means, wc called “factors” or “principal components”.

– The zi are called “factor loadings” or “low-dimensional basis”.

• The zi say how to mix the means/factors to approximate example ‘i’.

Principal Component Analysis (PCA)

• Principal component analysis (PCA) in matrix notation:

• Also called a matrix factorization model:

PCA Applications

• PCA has been reinvented many times:

https://en.wikipedia.org/wiki/Principal_component_analysis

• Applications of PCA:

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

• Much better approximation than vector quantization.

PCA Applications

• Applications of PCA:

– Dimensionality reduction: replace ‘X’ with lower-dimensional ‘Z’.

• If k << d, then compresses data.

• Much better approximation than vector quantization.

– Outlier detection: if PCA gives poor approximation of xi, could be ‘outlier’.

• Though due to squared error PCA is sensitive to outliers.

– Partial least squares: uses PCA features as basis for linear model.

PCA Applications

• Applications of PCA:

– Data visualization: plot zi with k = 2 to visualize high-dimensional objects.

http://infoproc.blogspot.ca/2008/11/european-genetic-substructure.html

PCA Applications

• Applications of PCA:

– Data interpretation: we can try to assign meaning to latent factors wc.

• Hidden “factors” that influence all the variables.

https://new.edu/resources/big-5-personality-traits

PCA Applications

PCA with d=1

• Consider the case of PCA when d=1:

• There is an obvious solution: w = 1 and zi = xi.

– PCA is only interested when k < d, since otherwise we can set zi = xi.

• PCA is not unique: w = 1/α and zi = αxi for any ‘α’ is a solution.

– We can enforce |w| = 1 to avoid this problem.

PCA with d=2 and k =1

• So simplest interesting case is d=2 and k=1:

• Very similar to a least squares problem, but note that:

– We have no ‘yi’, we are trying to predict each feature xij from the single zi.

– But feaures ‘zi’ are also variables, we are learning the features zi too.

• Side note: in PCA we assume features have a mean of 0.

– You can subtract mean or add bias variable if this is not true.

PCA with d=2 and k =1

PCA with d=2 and k =1

PCA with d=2 and k =1

PCA with d=2 and k =1

PCA Computation

• The PCA objective with general ‘d’ and ‘k’:

• 3 common ways to solve this problem:

– Singular value decomposition: classic non-iterative approach (bonus slide).

– Alternating minimization:

1. Start with random initialization.

2. Optimize ‘W’ with ‘Z’ fixed (solve gradient with respect to ‘W’ equals to 0).

3. Optimize ‘Z’ with ‘W’ fixed (solve gradient with respect to ‘Z’ equals to 0).

4. Go back to 2.

– Stochastic gradient: gradient descent based on random ‘i’ and ‘j’.

PCA Non-Convexity

• The PCA objective with general ‘d’ and ‘k’:

• This objective is not jointly convex in ‘W’ and ‘Z’.

– This is why iterative methods need random initialization.

• If you initialize with z1 = z2, then they stay the same.

– But it’s possible to show that all “stable” local optima are global optima.

• So alternating minimization and stochastic gradient give global optima in practice.

Summary

• Latent-factor models:

– Compress data as linear combination of ‘factors’.

• Principal component analysis:

– Most common variant based on squared reconstruction error.

• Next time: modifying PCA so it splits faces into ‘eyes’, ‘mouths’, etc.

Bonus Slide: PCA with Singular Value Decomposition

• Under constraints that wc
Twc = 1 and wc

Twc’ = 0, use:

• You can also quickly get compressed version of new data:

• If W was not orthogonal, could get Z by least squares.

