CPSC 340: Machine Learning and Data Mining

Stochastic Gradient

Fall 2016
Admin

• **Assignment 3:**
 – 3 late days before class Wednesday.
 – Solutions will be posted after class Wednesday.

• **Extra office hours Thursday:**
 – 10:30-12 and 4:30-6 in X836.

• **Midterm Friday:**
 – Midterm from last year and list of topics posted (covers Assignments 1-3).
 • Tutorials this week will cover practice midterm (and non-1D version of Q5).
 – In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.
Big-N Problems

• Consider fitting a least squares model:

\[f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 \]

• Gradient methods are effective when ‘d’ is very large.
 – \(O(nd) \) per iteration instead of \(O(nd^2 + d^3) \) to solve as linear system.

• What if number of training examples ‘n’ is very large?
 – All Gmys, all products on Amazon, all homepages, all images, etc.
Gradient Descent vs. Stochastic Gradient

• Recall the gradient descent algorithm:
 \[w^{t+1} = w^t - \alpha^t \nabla f(w^t) \]

• For least squares, our gradient has the form:
 \[\nabla f(w) = \sum_{i=1}^{n} (w^\top x_i - y_i)x_i \]

• The cost of computing the gradient is linear in ‘n’.
 – As ‘n’ gets large, gradient descent iterations become expensive.
Gradient Descent vs. Stochastic Gradient

• Common solution to this problem is **stochastic gradient** algorithm:

\[w^{t+1} = w^t - \alpha^t \nabla f_i(w^t) \]

• Uses **gradient of randomly-chosen** training example:

\[\nabla f_i(w) = (w^\top x_i - y_i)x_i \]

• Cost of computing this gradient is **independent of ‘n’**.
 – Iterations are ‘n’ times faster than gradient descent iterations.
Stochastic Gradient (SG)

- **Stochastic gradient** is an algorithm for minimizing averages:

 \[
 f(w) = \frac{1}{n} \sum_{i=1}^{n} \left(w^T x_i - y_i \right)^2 \quad (\text{squared error})
 \]

 \[
 f(w) = \frac{1}{n} \sum_{i=1}^{n} h(\left| w^T x_i - y_i \right|) \quad (\text{Huber loss})
 \]

 \[
 f(w) = \frac{1}{n} \sum_{i=1}^{n} \log (1 + \exp (- y_i w^T x_i)) \quad (\text{logistic regression})
 \]

 \[
 f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) \quad (\text{our notation for the general case})
 \]

- Key advantage: iterations cost doesn’t depend on ‘n’.
Stochastic Gradient (SG)

• **Stochastic gradient** is an *iterative optimization* algorithm:
 - We start with some initial guess, w^0.
 - Generate new guess by **moving in the negative gradient direction**:

 $w^{l} = w^0 - \alpha^0 \nabla f_i(w^0)$

 • For a random training example ‘i’.
 - Repeat to **successively refine the guess**:

 $w^{t+1} = w^t - \alpha^t \nabla f_i(w^t) \quad \text{for} \quad t = 1, 2, 3, \ldots$

 • For a random training example ‘i’.
Why Does Stochastic Gradient Work / Not Work?

• Main problem with stochastic gradient:
 – Gradient of random example might point in the wrong direction.

• Does this have any hope of working?
 – The average of the random gradients is the full gradient.

\[
\text{Mean over } \nabla f_i(w^t) \text{ is } \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w^t) \text{ which is } \nabla f(w^t)
\]

 – The algorithm is going in the right direction on average.
Gradient Descent vs. Stochastic Gradient (SG)

• Gradient descent:

• Stochastic gradient:
Gradient Descent in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]
Stochastic Gradient in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]

\[f_1(w) = (w^T x_1 - y_1)^2 \]
\[f_2(w) = (w^T x_2 - y_2)^2 \]
\[f_3(w) = (w^T x_3 - y_3)^2 \]
\[f_4(w) = (w^T x_4 - y_4)^2 \]
\[f_5(w) = (w^T x_5 - y_5)^2 \]
Stochastic Gradient in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]

\[f_1(w) = (w^T x_1 - y_1)^2 \]
\[f_2(w) = (w^T x_2 - y_2)^2 \]
\[f_3(w) = (w^T x_3 - y_3)^2 \]
\[f_4(w) = (w^T x_4 - y_4)^2 \]
\[f_5(w) = (w^T x_5 - y_5)^2 \]

\{ Stochastic gradient minimizes average value. \}
Stochastic Gradient in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]

\[f_1(w) = (w^T x_1 - y_1)^2 \]
\[f_2(w) = (w^T x_2 - y_2)^2 \]
\[f_3(w) = (w^T x_3 - y_3)^2 \]
\[f_4(w) = (w^T x_4 - y_4)^2 \]
\[f_5(w) = (w^T x_5 - y_5)^2 \]

Stochastic gradient minimizes average value.
Stochastic Gradient in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]

\[f_1(w) = (w^T x_1 - y_1)^2 \]
\[f_2(w) = (w^T x_2 - y_2)^2 \]
\[f_3(w) = (w^T x_3 - y_3)^2 \]
\[f_4(w) = (w^T x_4 - y_4)^2 \]
\[f_5(w) = (w^T x_5 - y_5)^2 \]

\(w^* \)

\{ Stochastic gradient minimizes average value. \}
Stochastic Gradient in Action

\[f(w) = \frac{1}{5} \sum_{i=1}^{5} (w^T x_i - y_i)^2 \]

\[f_1(w) = (w^T x_1 - y_1)^2 \]
\[f_2(w) = (w^T x_2 - y_2)^2 \]
\[f_3(w) = (w^T x_3 - y_3)^2 \]
\[f_4(w) = (w^T x_4 - y_4)^2 \]
\[f_5(w) = (w^T x_5 - y_5)^2 \]
Effect of ‘w’ Location on Progress

Every $\nabla f_i(w)$ here points towards w^*

"Region of confusion": some $\nabla f_i(w)$ point towards w^* and some don't

Every $\nabla f_i(w)$ here points towards w^*
Variance of the Random Gradients

• The “confusion” is captured by a kind of variance of the gradients:

\[
\frac{1}{n} \sum_{i=1}^{n} \| \nabla f_i(\omega^t) - \nabla f(\omega^t) \|^2
\]

• If the variance is 0, every step goes in the right direction.
 – We’re outside of region of confusion.

• If the variance is small, most steps point in the direction.
 – We’re just inside region of confusion.

• If the variance is large, many steps will point in the wrong direction.
 – Middle of region of confusion, where \(w^* \) lives.
Effect of the Step-Size

• We can control the variance with the step size:
 – Variance slows progress by amount proportional to square of step-size.

• For a fixed step-size, SG makes progress until variance is too big.

• This leads to 2 phases when we use a constant step-size:
 1. Rapid progress when we are far from the solution.
 2. Erratic behaviour within a “ball” around solutions.
 (Radius of ball is proportional to the step-size.)
Stochastic Gradient with Constant Step Size

w_0

(start)

Fast convergence to the ball

Algorithm is erratic inside the ball.

w_t (spinning)

A ball with radius proportional to αt.
Stochastic Gradient with Constant Step Size

- Fast convergence to the ball
- We can divide the radius of the ball in 2 by dividing α^t by 2.
- Algorithm is erratic inside the ball.
- A ball with radius proportional to α^t.
Stochastic Gradient with Decreasing Step Sizes

- To get convergence, we need a **decreasing step size**.
 - Shrinks size of ball to zero so we converge to w^*.
- But it *can’t* shrink too quickly:
 - Otherwise, we don’t move fast enough to reach ball.
- Classic solution to this problem is set step-sizes α^t so that:
 \[
 \sum_{t=1}^{\infty} \alpha^t = \infty \\
 \sum_{t=1}^{\infty} (\alpha^t)^2 < \infty
 \]
 "we can get anywhere" "effect of variance goes to zero"
- We can achieve this by using sure $\alpha^t = O(1/t)$.
Stochastic Gradient Methods in Practice

• Unfortunately, setting $\alpha^t = O(1/t)$ works badly in practice:
 – Initial steps can be very large.
 – Later steps get very tiny.

• Practical tricks:
 – Some authors propose add extra parameters like $\alpha^t = \beta/(t + \gamma)$.
 – Theory and practice support using steps that go to zero more slowly:
 $$\alpha^t = O\left(\frac{1}{\sqrt{t}}\right) \quad \text{or} \quad \alpha^t = O(1) \quad \text{(constant)}$$

• But using a weighted average of the iterations:
 $$\overline{w}^t = \sum_{k=1}^{\infty} \beta^k w^k$$
 "weight" of iteration \(k \)
Stochastic Gradient with Averaging

Often, you average the second half of the iterations.
A Practical Strategy For Choosing the Step-Size

• All these step-sizes have a constant factor in the “O” notation.
 – E.g., $\alpha_t = \frac{\gamma}{\sqrt{t}} \iff \text{How do we choose this constant?}$

• We don’t know how to do line-searches in the stochastic case.
 – And choosing wrong γ can destroy performance.

• Common practical trick:
 – Take a small amount of data (maybe 5% of the original data).
 – Do a binary search for γ that most improves objective on this subset.
A Practical Strategy for Deciding When to Stop

• In gradient descent, we can stop when gradient is close to zero.
• In stochastic gradient:
 – Individual gradients don’t necessarily go to zero.
 – We can’t see full gradient, so we don’t know when to stop.

• Practical trick:
 – Every ‘k’ iterations (for some large ‘k’), measure validation set error.
 – Stop if the validation set error isn’t improving.
More Practical Issues

• Does it make sense to use 2 random examples?
 – Yes, you can use a “mini-batch” of examples.
 \[w^{t+1} = w^t - \alpha^t \frac{1}{|B^t|} \sum_{i \in B^t} \nabla f_i(w^t) \]
 – The variance is inversely proportional to the mini-batch size.
 • You can use a bigger step size.
 • Big gains for going from 1 to 2, less big gains from going from 100 to 101.
 – Useful for vectorizing/parallelizing code.

• Can we use regularization?

 If \[f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w) + \frac{\lambda}{2} \|w\|^2 \]
 then SG update is \[w^{t+1} = w^t - \alpha^t (\nabla f_i(w^t) + Iw^t) \]
Since 2012: methods with $O(d)$ cost and polynomial in number of digits.
- Key idea: if ‘n’ is finite, you can use a memory instead of having α_t go to zero.
- First was stochastic average gradient (SAG).
Stochastic Gradient with Infinite Data

- Magical property of stochastic gradient:
 - The classic convergence analysis does not rely on ‘n’ being finite.
- Consider an infinite sequence of IID samples.
 - Or any dataset that is so large we cannot even go through it once.
- Approach 1 (gradient descent):
 - Stop collecting data once you have a very large ‘n’.
 - Fit a regularized model on this fixed dataset.
- Approach 2 (stochastic gradient):
 - Perform a stochastic gradient iteration on each example as we see it.
 - Never re-visit any example, always take a new one.
Stochastic Gradient with Infinite Data

• Approach 2 only looks at data point once:
 – Each example is an unbiased approximation of test data.

• So Approach 2 is doing stochastic gradient on test error:
 – It cannot overfit.

• Up to a constant, Approach 2 achieves test error of Approach 1.
 – This is sometimes used to justify SG as the “ultimate” learning algorithm.
 – In practice, Approach 1 usually gives lower test error (we don’t know why).
Summary

• **Stochastic gradient** methods let us use huge datasets.
• **Step-size in stochastic gradient** is a huge pain:
 – Needs to go to zero to get convergence, but this works badly.
 – Constant step-size works well, but only up to a certain point.
• **SAG** and other newer methods fix convergence for finite datasets.
• **Infinite datasets** can be used with SG and do not overfit.

• Next time:
 – Feature selection?