CPSC 340: Machine Learning and Data Mining

Stochastic Gradient
Fall 2016
Admin

• **Assignment 3:**
 – 2 late days before class Monday, 3 late days before class Wednesday.
 – Solutions will be posted after class Wednesday.

• **Midterm** next Friday:
 – Midterm from last year and list of topics posted (covers Assignments 1-3).
 • Tutorials next week will cover practice midterm.
 – In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.
We discussed the **maximum margin** view of **SVMs**:
- Yields an **L2-regularized hinge loss**.

We introduced the **kernel trick**:
- Write model to only depend on **inner products between features vectors**.

\[\hat{y} = \hat{k} (k + \lambda I)^{-1} y \]

\[\text{\(L \times n \) matrix } \hat{Z} \text{ containing inner products between test examples and training examples,} \]
\[\Rightarrow \text{\(n \times n \) matrix } Z Z^T \text{ containing inner products between all training examples.} \]
- So everything we need to know about \(z_i \) is summarized by the \(z_i^T z_j \).
- If you have a **kernel function** \(k(x_i, x_j) \) that computes \(z_i^T z_j \), then you don’t need to compute the basis \(z_i \) explicitly.

Polynomial Kernel with Higher Degrees

- Assume that I have 2 features and want to use the degree-2 basis:
 \[z_i = \begin{bmatrix} 1 & \sqrt{2} x_{i1} & \sqrt{2} x_{i2} & x_{i1}^2 & \sqrt{2} x_{i1} x_{i2} & x_{i2}^2 \end{bmatrix}^T \]

- I can compute inner products using:
 \[
 (1 + x_i^T x_j)^2 = 1 + 2 x_i^T x_j + (x_i^T x_j)^2 \\
 = 1 + 2 x_{i1} x_{j1} + 2 x_{i2} x_{j2} + x_{i1}^2 x_{j1}^2 + 2 x_{i1} x_{i2} x_{j1} x_{j2} + x_{i2}^2 x_{j2}^2 \\
 = [1, \sqrt{2} x_{i1}, \sqrt{2} x_{i2}, x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2]^T \begin{bmatrix} 1 \\ \sqrt{2} x_{i1} \\ \sqrt{2} x_{i2} \\ x_{i1}^2 \\ \sqrt{2} x_{i1} x_{i2} \\ x_{i2}^2 \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} x_{j1} \\ \sqrt{2} x_{j2} \\ x_{j1}^2 \\ \sqrt{2} x_{j1} x_{j2} \\ x_{j2}^2 \end{bmatrix} \\
 = z_i^T z_j
 \]
Polynomial Kernel with Higher Degrees

• To get all degree-4 “monomials” I can use:

\[z_i^T z_j = (x_i^T x_j)^4 \]

Equivalent to using a \(z_i \) with weighted versions of \(x_i^4, x_i^3 x_{i2}, x_i^2 x_{i2}^2, x_{i2}^3, \ldots \).

• To also get lower-order terms use \(z_i^T z_j = (1 + x_i^T x_j)^4 \).

• The general degree-\(p \) polynomial kernel function:

\[k(x_i, x_j) = (1 + x_i^T x_j)^p \]

 – Works for any number of features ‘\(d \)’.
 – But cost of computing \(z_i^T z_j \) is \(O(d) \) instead of \(O(d^p) \).
Kernel Trick

• Using polynomial basis of degree ‘p’ with the kernel trick:
 – Compute K and \hat{K}:
 $$ K_{ij} = (1 + \mathbf{x}_i \mathbf{x}_j)^p \quad \hat{K}_{ij} = (1 + \hat{x}_i \mathbf{x}_j)^p $$
 – Make predictions using:
 $$ \hat{Y} = \hat{K} (\hat{K} + \hat{I})^{-1} \hat{Y} $$

• Training cost is only $O(n^2d + n^3)$, despite using $O(dp)$ features.
 – Testing cost is only $O(ndt)$.

\[\begin{align*}
 &\text{Training cost:} \quad O(n^2d + n^3) \\
 &\text{Testing cost:} \quad O(ndt)
\end{align*} \]
Linear Regression vs. Kernel Regression

Linear Regression

Training
1. Form basis Z from X.
2. Compute $w = (Z^T Z + \lambda I)^{-1} (Z^T y)$

Testing
1. Form basis \hat{Z} from \hat{X}
2. Compute $\hat{y} = \hat{Z} w$

Kernel Regression

Training
1. Form inner products K from X.
2. Compute $v = (K + \lambda I)^{-1} y$

Testing
1. Form inner products \hat{K} from X and \hat{X}
2. Compute $\hat{y} = \hat{K} v$

Non-parametric
Motivation: Finding Gold

• Kernel methods first came from mining engineering (‘Kriging’):
 – Mining company wants to find gold.
 – Drill holes, measure gold content.
 – Build a kernel regression model (typically use RBF kernels).
Gaussian-RBF Kernel

• Most common kernel is the Gaussian RBF kernel:

\[k(x_i, x_j) = \exp \left(-\frac{||x_i - x_j||^2}{2\sigma^2} \right) \]

• Same formula and behaviour as RBF basis, but not equivalent:
 – Before we used RBFs as a basis, now we’re using them as inner-product.
• Basis \(z_i \) giving the Gaussian RBF kernel is infinite-dimensional.

• Kernel trick lets us fit regression models without explicit features:
 – We can interpret \(k(x_i, x_j) \) as a “similarity” between objects \(x_i \) and \(x_j \).
 – We don’t need \(z_i \) and \(z_j \) if we can compute ‘similarity’ between objects.
Kernel Trick for Structure Data

• Consider data that doesn’t look like this:

\[
X = \begin{bmatrix}
0.5377 & 0.3188 & 3.5784 \\
1.8339 & -1.3077 & 2.7694 \\
-2.2588 & -0.4336 & -1.3499 \\
0.8622 & 0.3426 & 3.0349 \\
\end{bmatrix}, \quad y = \begin{bmatrix}
+1 \\
-1 \\
-1 \\
+1 \\
\end{bmatrix},
\]

• But instead looks like this:

\[
X = \begin{bmatrix}
\text{Do you want to go for a drink sometime?} \\
\text{J’achète du pain tous les jours.} \\
\text{Fais ce que tu veux.} \\
\text{There are inner products between sentences?} \\
\end{bmatrix}, \quad y = \begin{bmatrix}
+1 \\
-1 \\
-1 \\
+1 \\
\end{bmatrix}.
\]

• Instead of using features, can define kernel between sentences.
 – E.g, “string kernels”: weighted frequency of common subsequences.
• There are also “image kernels”, “graph kernels”, and so on...
Valid Kernels

• What kernel functions $k(x_i, x_j)$ can we use?

• Kernel ‘k’ must be an inner product in some space:
 – There must exist a mapping from x_i to some z_i such that $k(x_i, x_j) = z_i^T z_j$.

• It can be hard to show that a function satisfies this.
• But there are some simple rules for constructing valid kernels from other valid kernels (bonus slide).
Kernel Trick for Other Methods

• Besides \textbf{L2-regularized least squares}, when can we use kernels?
 – \textbf{Methods based on Euclidean distances} between examples:
 • Kernel k-nearest neighbours.
 • Kernel clustering (k-means, DBSCAN, hierarchical).
 • Kernel outlierness.
 • Kernel “Amazon Product Recommendation”.
 • Kernel non-parametric regression.

\[\|z_i - z_j\|^2 = z_i^T z_i - 2 z_i^T z_j + z_j^T z_j \]

– \textbf{L2-regularized linear models} (“representer theorem”):
 • L2-regularized robust regression.
 • L2-regularized logistic regression.
 • L2-regularized support vector machines.

\[\text{With a particular implementation testing cost is reduced from } O(n dt) \text{ to } O(md t) \text{ Number of support vectors.} \]
Motivation: How we train on all of Gmail?

• In the Gmail problem from last time, ‘n’ and ‘d’ are huge.
 – ‘n’ is the number of e-mails.
 – ‘d’ is (number of features)*(number of users + 1).

• Cost of 1 iteration gradient descent for logistic regression is $O(nd)$:
 – $O(nd)$ to compute $w^T x_i$ for all ‘i’.
 – $O(n)$ to compute $f(x)$ and each r_i.
 – $O(nd)$ to multiply X^T by ‘r’.

• But it’s cheaper than this because x_i are very sparse:
 – Each e-mail has a limited number of non-zero features,
 – Each e-mail only has “global” features and “local” features for one user.
Motivation: How we train on all of Gmail?

• In the Gmail problem from last time, ‘n’ and ‘d’ are huge.
 – ‘n’ is the number of e-mails.
 – ‘d’ is (number of features)*(number of users + 1).

• Cost of 1 iteration gradient descent for logistic regression is O(ns):
 – Where ‘s’ is the average number of non-zero features.

 $\nabla f(x) = X^T r$

 with

 $r_i = \frac{1}{1 + \exp(y_i w^T x_i)}$

 – O(ns) to compute $w^T x_i$ for all ‘i’ (just need non-zero values).
 – O(n) to compute $f(x)$ and each r_i.
 – O(ns) to multiply X^T by ‘r’ (just need non-zero values).

• But how do we deal with the very large ‘n’?
Minimizing Sums with Gradient Descent

• Consider minimizing average of differentiable functions:

\[
\arg\min_{w \in \mathbb{R}^d} f(w) \quad \text{where} \quad f(w) = \frac{1}{n} \sum_{i=1}^{n} f_i(w)
\]

\[
f_i(w) = (w^T x_i - y_i)^2
\]

• Includes all our differentiable losses as special cases.

• Gradient descent for this problem:

\[
\mathbf{w}^{t+1} = \mathbf{w}^t - \alpha_t \nabla f(\mathbf{w}^t)
\]

\[
G-\text{mail: } f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(y_i w^T x_i)) = \mathbf{w}^t - \alpha_t \left(\frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\mathbf{w}^t) \right)
\]

• Nice properties, but **iterations require gradients of all ‘n’ examples.**

• Key idea behind **stochastic gradient methods:**

 – On average, we can decrease ‘f’ using the gradient of a random example.
Stochastic Gradient Method

• **Stochastic gradient** method:
 1. Pick a random example i_t.
 2. Perform a gradient descent step based only on this example.

$$w_{t+1} = w_t - \alpha_t \nabla f_{i_t}(w_t)$$

• Intuition: unbiased estimate of full gradient:

$$E_{i_t} \left[\nabla f_{i_t}(w_t) \right] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i_t}(w_t) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w_t) = \nabla f(w)$$

• Key advantage:
 – Iteration cost is $O(d)$, it does not depend on ‘n’.
 – If ‘n’ is 1 billion, it is 1 billion times faster than gradient descent.

• But does this actually work?
Deterministic Gradient Method in Action

Consider just estimating bias:

Overall squared error:
Deterministic Gradient Method in Action

Consider just estimating bias:

\[Y \]

\[X \times \times \times \times \times \times \]

\[w^* \]

\[w^0 \]

\[X \]

Overall squared error:

\[w_0 \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow w_4 \]

\[w^0 \rightarrow w_1 \rightarrow w_2 \rightarrow w_3 \rightarrow w_4 \]
Stochastic Gradient Method in Action

Consider just estimating bias:

\[y \]

\[w^* \]

Overall squared error:

\[w^* \]

Individual squared errors
Stochastic Gradient Method in Action

Consider just estimating bias:

\[Y \]
\[X \]
\[w^0 \]
\[w^* \]

Overall squared error:

\[w^0 \]
\[w^* \]

Individual squared errors

\[w^0 \]
\[w^* \]
Consider just estimating bias:

Overall squared error:

Individual squared errors
Stochastic Gradient Method in Action

Consider just estimating bias:

Overall squared error:

Individual Squared Errors
Stochastic Gradient Method in Action

Consider just estimating bias:

Overall squared error:

Individual squared errors
Consider just estimating bias:

\[X, X, X, X, X, w^* \]

\[w^0, w^1, w^2, w^3, w^4, y \]

Overall squared error:

Individual Squared Errors
Stochastic Gradient Method in Action

Individual Squared Errors

\[w^* \]

"region of confusion"

if \(w \) is here, any example points in right direction
Convergence of Stochastic Gradient

• Problem is that stochastic gradient step might increase error ‘f’:
 – Since you only look at one example, you can’t just check ‘f’.
• Key property used for convergence:
 – If the sequence of w^t are sufficiently ‘close’, we decrease ‘f’ on average.
 – How ‘close’ they need to be depends on how close we are to minimum.
• To get convergence, we need a decreasing sequence of step sizes:
 – Need to converge to zero fast enough (makes variance go to 0).
 – Can’t converge to zero too quickly (need to be able to get anywhere).
• For example: $\alpha_t = O\left(\frac{1}{t}\right)$ implies that $\sum_{t=1}^{\infty} \alpha_t = \infty$, $\sum_{t=1}^{\infty} \alpha_t^2 < \infty$
 - not too small
 - not too big
Summary

• Kernels let us use similarity between objects, rather than features.
• Stochastic gradient methods let us use huge datasets.
• Convergence of stochastic gradient requires decreasing step sizes.

• Next time:
 – Non-binary discrete labels like categories, counts, rankings, etc.