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Admin

• Assignment 2:

– Solution posted.

• Assignment 3:

– Due Wednesday (before midnight anywhere on Earth).

– Solutions released next Wednesday after class (last possible late class).

• Midterm on Friday October 28. 

– Midterm from last year and list of topics posted (covers Assignments 1-3)

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided. 



Part 3 Review

• Focus of Part 3 is linear models:
– Supervised learning where prediction is linear combination of features:

• Change of basis: replace features xi with zi:
– Add a bias variable (feature that is always one).

– Polynomial basis.

– Radial basis functions (non-parametric basis).

• Regression:
– Target yi is numerical.

– Testing whether (yhat == yi) doesn’t make sense.



Part 3 Review

• Alternate error functions for regression:

– Squared error:

• Can find optimal ‘w’ by solving linear system.

– L1-norm and L∞-norm errors: 

• More/less robust to outliers.

• L2-regularization:

– Adding a penalty on the L2-norm of ‘w’ to decrease overfitting:



Part 3 Review

• Gradient descent:

– Can we used to find a local minimum of a smooth function.

• L1-norm and L∞-norm errors are convex but non-smooth:

– But we can smooth them using Huber and log-sum-exp functions.

• Convex functions:

– Special functions where all local minima are global minima.

– Simple rules for showing that a function is convex.



Last Time: Classification using Regression

• Binary classification using sign of linear models:

• Problems with existing errors:

– If yi = +1 and wTxi = +100, then squared error (wTxi – yi)
2 is huge.

– Hard to minimize training error (“0-1 loss”) in terms of ‘w’.

• Motivates convex approximations to 0-1 loss:

– Logistic loss (logistic regression):

– Hinge loss (support vector machine):



Last Time: Classification using Regression

• Can minimize smooth/convex logistic loss using gradient descent.
– There are also efficient methods for support vector machines (SVMs).

• Logistic regression and SVMs are used EVERYWHERE!
– Fast training and testing, weights wj are easy to understand. 

– With high-dimensional features and regularization, often good test error.
• Otherwise, often good test error with RBF basis and regularization.

• Some random questions you might be asking:
– Can we use a polynomial basis with more than 1 feature?

– Why didn’t we do the “textbook” derivation of logistic/SVM?

– How do we train on all of Gmail?

– Did we miss feature selection?



2D View of Linear Classifiers

• 2D Visualization of linear regression for classification:

• “Linearly separable”: a perfect linear classifier exists.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– “Perceptron” algorithm finds some classifier with zero error.

– But are all zero-error classifiers equally good?



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Maximum-Margin Classifier

• Consider a linearly-separable dataset.

– Maximum-margin classifier: choose the farthest from both classes.



Support Vector Machines

• For linearly-separable data, support vector machine (SVM) 
minimizes:

– Subject to the constraints that:
(see Wikipedia or ML textbooks)

• For non-separable data, try to minimize violation of constraints:



Support Vector Machines

• For non-separable data, try to minimize violation of constraints:

• For non-separable data, we usually define SVMs as minimum of:



Support Vector Machines for Non-Separable

• Non-separable case:
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Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes
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Support Vector Machines for Non-Separable

• What about data that is not even close to separable?

– It may be separable under change of basis (or closer to separable).

http://math.stackexchange.com/questions/353607/how-do-inner-product-space-determine-half-planes



Multi-Dimensional Polynomial Basis

• Recall fitting polynomials when we only have 1 feature:

• We can fit these models using a change of basis:

• How can we do this when we have a lot of features?



Multi-Dimensional Polynomial Basis

• Approach 1: use polynomial basis for each variable.

• But this is restrictive:

– We should allow terms like ‘xi1xi2’ that depend on feature interaction.

– But number of terms in Xpoly is huge:

• Degree-5 polynomial basis has O(d5) terms:

• If reasonable ‘n’, we can do this efficiently using the kernel trick.



Equivalent Form of Ridge Regression

• Recall L2-regularized least squares objective with basis matrix ‘Z’:

• We showed that the solution is given by:

• Using a “matrix inversion lemma” we can re-write this as:

• This is faster if n << d:
– ZTZ is ‘d’ by ‘d’ while ZZT is ‘n’ by ‘n’.



Predictions using Equivalent Form

• Given test data  𝑋, predict  𝑦 by forming and  𝑍 using:

• Key observation behind kernel trick:

– Predictions  𝑦 only depend on features through K and  𝐾.

– If we have function that computes K and  𝐾, we don’t need the features.



Gram Matrix

• The Gram matrix ‘K’ is defined by:

• ‘K’ contains the inner products between all training examples.



Gram Matrix

• The Gram matrix ‘K’ is defined by:

• ‘K’ contains the inner products between all training examples.

• ‘  𝐾′ contains the inner products between training and test examples.

• Kernel trick:
– I want to use a basis zi that is too huge to store.

– But I only need zi to compute K = ZZT and  𝐾 =  𝑍ZT.

– I can use this basis if I have a kernel function that computes k(xi,xj) = zi
Tzj.



Polynomial Kernel

• Consider two examples xi and xj for a 2-dimensional dataset:

• And consider a particular degree-2 basis:

• We can compute inner product zi
Tzj without forming zi and zj:



Summary

• Support vector machines maximize margin to nearest data points.

• High-dimensional bases allows us to separate non-separable data.

• Kernel trick allows us to use high-dimensional bases efficiently.

• Next time:

– How could we train on all of Gmail?


