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Admin

• Assignment 1:
– Marks visible on UBC Connect.

• Assignment 2:
– Solution posted after class.

• Assignment 3:
– Due Wednesday (at any time on Earth).

– Solutions will be released next Wednesday after class.

• Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

• Midterm on Friday October 28. 
– Practice midterm and list of topics posted (covers Assignments 1-3)

– In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided. 



Summary of Last Lecture

1. Error functions:
– Squared error is sensitive to outliers.

– Absolute (L1) error and Huber error are more robust to outliers.

– Brittle (L∞) error is more sensitive to outliers.

2. L1 and L∞ error functions are non-differentiable:
– Finding ‘w’ minimizing these errors is harder.

3. We can approximate these with differentiable functions:
– L1 can be approximated with Huber.

– L∞ can be approximated with log-sum-exp.

4. Gradient descent finds local minimum of differentiable function.

5. For convex functions, any local minimum is a global minimum.



Very Robust Regression

• Consider data with extreme outliers:

• Non-convex errors can be very robust:

– Eventually ‘give up’ on trying to make large errors smaller.

• But with non-convex errors, finding global minimum is hard.

• Absolute value is the most robust convex error function.



How do we know if a function is convex?

• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.
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How do we know if a function is convex?

• Some useful tricks for showing a function is convex:

– 1-variable, twice-differentiable function is convex iff f’’(w) ≥ 0 for all ‘w’.

– A convex function multiplied by non-negative constant is convex.

– Norms and squared norms are convex.

– The sum of convex functions is a convex function.

– The max of convex functions is a convex function.

– Composition of a convex function and a linear function is convex.

• But: not true that composition of convex with convex is convex:



Example: Convexity of Linear Regression

• Consider linear regression objective with error function ‘g’:

• Sufficient for ‘g’ to be convex for ‘f’ to be convex:

– Then each term is composition of convex with linear.

– And sum of convex is convex.

• Examples:



Example: Convexity of Linear Regression

• Consider linear regression objective with error function ‘g’:

• Sufficient for ‘g’ to be convex for ‘f’ to be convex:

– Then each term is composition of convex with linear.

– And sum of convex is convex.

• Same condition applies with L2-regularization.



Linear Models with Binary Features

• What is the effect of a binary feature on linear regression?

• Adding a bias w0, our linear model is:

• The ‘gender’ variable causes a change in y-intercept:

Year Gender

1975 1

1975 0

1980 1

1980 0

Height

1.85

2.25

1.95

2.30

http://www.medalinframe.com/athletes/sara-simeoni/
http://www.at-a-lanta.nl/weia/Progressie.html



Linear Models with Binary Features

• What if different genders have different slopes?

– You can use gender-specific feature.

http://www.at-a-lanta.nl/weia/Progressie.html
http://www.wikiwand.com/it/Udo_Beyer
http://women-s-rights.blogspot.ca/

Bias
(gender = 1)

Year 
(gender = 1)

Bias 
(gender = 0)

Year
(gender = 0)

1 1975 0 0

0 0 1 1975

1 1980 0 0

0 0 1 1980

Year Gender

1975 1

1975 0

1980 1

1980 0



Linear Models with Binary Features

• That trick fits separate ‘local’ variable for each gender.

• To share information across genders, include a ‘global’ version.

• ‘Global’ year feature: influence of time on both genders.
– E.g., improvements in technique.

• ‘Local’ year feature: gender-specific deviation from global trend.
– E.g., different effects of performance-enhancing drugs.

Year Year (if gender = 1) Year (if gender = 0)

1975 1975 0

1975 0 1975

1980 1980 0

1980 0 1980

Year Gender

1975 1

1975 0

1980 1

1980 0



Linear Models with Binary Features

Feature 1 Feature 2
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3 Δ
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Motivation: Identifying Important E-mails

• How can we automatically identify ‘important’ e-mails?

• We have a big collection of e-mails:

– Mark as ‘important’ if user takes some action based on them.

• There might be some “universally” important messages:

– “This is your mother, something terrible happened, give me a call ASAP.”

• But your “important” message may be unimportant to others.

– Similar for spam: “spam” for one user could be “not spam” for another.



The Big Global/Local Feature Table



Predicting Importance of E-mail For New User

• Consider a new user:
– Start out with no information about them.

– Use global features to predict what is important to generic user.

• With more data, update global features and user’s local features:
– Local features make prediction personalized.

– What is important to this user?

• G-mails system: classification with logistic regression.



Classification Using Regression?

• Usual approach to do classification with regression:

– Code yi as ‘-1’ for one class and ‘+1’ for the other class.

– E.g., ‘+1’ means ‘important’ and ‘-1’ means ‘not important’.

• At training time, fit a linear regression model:

• To predict, we take the sign (i.e., closer ‘-1’ or ‘+1’?):



Classification using Regression
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Classification Using Regression

• Can use regression tricks (basis, regularization) for classification.

• But, usual error functions do weird things:



Classification Using Regression

• What went wrong?

– “Good” errors vs. “bad” errors.



Classification Using Regression

• What went wrong?

– “Good” errors vs. “bad” errors.
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0-1 Loss Function

• The 0-1 loss function is the number of classification errors:

– Unlike regression, in classification it’s reasonable that sign(wTxi) = yi.

• Unfortunately the 0-1 loss is non-convex in ‘w’.

– It’s easy to minimize if a perfect classifier exists.

– Otherwise, finding the ‘w’ minimizing 0-1 loss is a hard problem.

• Convex approximations to 0-1 loss:

– Hinge loss (non-smooth) and logistic loss (smooth).



Convex Approximations to 0-1 Loss
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Hinge Loss and Support Vector Machines

• Hinge loss is given by:

– Convex upper bound on number of classification errors.

– Solution will be a perfect classifier, if one exists.

• Support vector machine (SVM) is hinge loss with L2-regularization.

– Next time we’ll see that it “maximizes the margin”.



Logistic Regression

• Logistic regression minimizes logistic loss:

• You can/should also add regularization:

• Convex and differentiable: minimize this with gradient descent.



Logistic Regression and SVMs

• Logistic regression and SVMs are used EVERYWHERE!

• Why?

– Training and testing are both fast.

– It is easy to understand what the weights ‘wj’ mean.

– With high-dimensional features and regularization, often good test error.

– Otherwise, often good test error with RBF basis and regularization.

– Smoother predictions than random forests.



Summary

• Convex functions an be identified using a few simple rules.

• Global vs. local features allows ‘personalized’ predictions.

• Classification using regression works if done right.

• 0-1 loss is the ideal loss, but is non-smooth and non-convex.

• Logistic regression uses a convex and smooth approximation to 0-1.

• Next time:

– One more reason to use regularization, and how to find gold.



Bonus Slide: Perceptron Algorithm

• One of the first “learning” is the perceptron algorithm.
– Searches for a ‘w’ such that wTxi > 0 when yi = +1, wTxi < 0 for yi=-1.

• Perceptron Algorithm:
– Start with w0 = 0.

– Go through examples in any order until you make a mistake predicting yi.
• Set wt+1 = wt + yixi.

– Keep going through examples until you make no errors on training data.

• If a perfect classifier exists, this algorithm converges to one.
– In fact, “perceptron mistaked bound” result says that number of mistakes is 

finite.


