CPSC 340: Machine Learning and Data Mining

Logistic Regression Fall 2016

Admin

- Assignment 1:
 - Marks visible on UBC Connect.
- Assignment 2:
 - Solution posted after class.
- Assignment 3:
 - Due Wednesday (at any time on Earth).
 - Solutions will be released next Wednesday after class.
- Tutorial room change: T1D (Monday @5pm) moved to DMP 101.
- Midterm on Friday October 28.
 - Practice midterm and list of topics posted (covers Assignments 1-3)
 - In class, 55 minutes, closed-book, cheat sheet: 2-pages each double-sided.

Summary of Last Lecture

1. Error functions:

- Squared error is sensitive to outliers.
- Absolute (L₁) error and Huber error are more robust to outliers.
- Brittle (L_{∞}) error is more sensitive to outliers.
- 2. L_1 and L_{∞} error functions are non-differentiable: - Finding 'w' minimizing these errors is harder.
- 3. We can approximate these with differentiable functions:
 - $-L_1$ can be approximated with Huber.
 - L_{∞} can be approximated with log-sum-exp.
- 4. Gradient descent finds local minimum of differentiable function.
- 5. For convex functions, any local minimum is a global minimum.

Very Robust Regression

- Non-convex errors can be very robust:
 - Eventually 'give up' on trying to make large errors smaller.
- But with non-convex errors, finding global minimum is hard.
- But with non-convex error, Absolute value is the most robust convex error function. $\chi \chi_{XX} = \chi_{XX} + \chi_{XX}$

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.

We showed that $f(w) = e^{w}$ is convex, so $f(w) = 10e^{w}$ is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.

$$f(x) = |0e^w + \frac{1}{2}||w||^2 \text{ is convex}$$

From constant norm
earlier squared

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function

$$f(w) = \max \{ \{ \{ \} \} \} \}$$
 is convex

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.

- Some useful tricks for showing a function is convex:
 - 1-variable, twice-differentiable function is convex iff $f''(w) \ge 0$ for all 'w'.
 - A convex function multiplied by non-negative constant is convex.
 - Norms and squared norms are convex.
 - The sum of convex functions is a convex function.
 - The max of convex functions is a convex function.
 - Composition of a convex function and a linear function is convex.
- But: not true that composition of convex with convex is convex:

Even if 'f' is convex and 'g' is convex,
$$f(g(w))$$
 might not be convex.
E.g. x^2 is convex and $-\log(x)$ is convex but $-\log(x^2)$ is not convex.

Example: Convexity of Linear Regression

• Consider linear regression objective with error function 'g':

$$f(w) = \sum_{i=1}^{n} g(w^{T}x_{i} - y_{i})$$

- Sufficient for 'g' to be convex for 'f' to be convex:
 - Then each term is composition of convex with linear.
 - And sum of convex is convex.
- Examples:

For squared error
$$g(r_i) = \frac{1}{2}r_i^2$$
 so $g''(r_i) = 1$ and 'f' is convex.
For absolute error $g(r_i) = |r_i|$ which is a norm so 'f' is convex.

Example: Convexity of Linear Regression

• Consider linear regression objective with error function 'g':

$$f(w) = \sum_{i=1}^{n} g(w^{T}x_{i} - y_{i}) + \frac{1}{2} ||w||^{2}$$

- Sufficient for 'g' to be convex for 'f' to be convex:
 - Then each term is composition of convex with linear.
 - And sum of convex is convex.
- Same condition applies with L₂-regularization.

• What is the effect of a binary feature on linear regression?

Year	Gender	Height
1975	1	1.85
1975	0	2.25
1980	1	1.95
1980	0	2.30

- Adding a bias w₀, our linear model is:
 height = w₀ + w₁ * year + w₂ * gender
- The 'gender' variable causes a change in y-intercept: If gender == 0 then height = $w_0 + w_1 * y_e ar$ If gender == 1 then height = $w_0 + w_1 * y_e ar + w_2$

http://www.at-a-lanta.nl/weia/Progressie.html http://www.wikiwand.com/it/Udo_Beyer http://women-s-rights.blogspot.ca/

- What if different genders have different slopes?
 - You can use gender-specific feature.

Year	Gender		Bias (gender = 1)	Year (gender = 1)	Bias (gender = 0)	Year (gender = 0)
1975	1		1	1975	0	0
1975	0	= 7	0	0	1	1975
1980	1		1	1980	0	0
1980	0		0	0	1	1980
,						

- That trick fits separate 'local' variable for each gender.
- To share information across genders, include a 'global' version.

Year	Gender		Year	Year (if gender = 1)	Year (if gender = 0)
1975	1	<u> </u>	1975	1975	0
1975	0	\equiv	1975	0	1975
1980	1		1980	1980	0
1980	0		1980	0	1980

- 'Global' year feature: influence of time on both genders.
- E.g., improvements in technique. 'Local' year feature: gender-specific deviation from global trend, $\int_{qenders}^{u} \int_{qender}^{10} deviation from global trend, <math>\int_{qenders}^{u} \int_{qender}^{10} deviation from global trend, <math>\int_{qenders}^{u} \int_{qenders}^{10} deviation from global trend, <math>\int_{qenders}^{u} deviation from global trend, <math>\int_{qenders}^{u} deviation from global trend, \int_{qenders}^{u} deviation from g$

	Feature 1	Feature 2		
	0.5	Х		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
χ=	3	0		x d A
	5	0		x a o A A
	2.5	Δ		
	1.5	Х		
	3	Δ		
L				0
				0

Motivation: Identifying Important E-mails

• How can we automatically identify 'important' e-mails?

COMPOSE	□☆ >	Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @	10:41 am
		Holger, Jim (2)	lists Intro to Computer Science	10:20 am
Inbox (3) Starred	🗆 📩 »	Issam Laradji	Inbox Convergence rates for cu @	9:49 am
Important	- 🕁 💌	sameh, Mark, sameh (3)	Inbox Graduation Project Dema @	8:01 am
Sent Mail	□ ☆ »	Mark sara, Sara (11)	Label propagation	7:57 am

- We have a big collection of e-mails:
 - Mark as 'important' if user takes some action based on them.
- There might be some "universally" important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

Predicting Importance of E-mail For New User

- Consider a new user:
 - Start out with no information about them.
 - Use global features to predict what is important to generic user.

With more data, update global features and user's local features:
 – Local features make prediction *personalized*.

– What is important to *this* user?

• G-mails system: classification with logistic regression.

Classification Using Regression?

- Usual approach to do classification with regression:
 - Code y_i as '-1' for one class and '+1' for the other class.
 - E.g., '+1' means 'important' and '-1' means 'not important'.
- At training time, fit a linear regression model:

$$y_i = w_i x_{i1} + w_2 x_{i2} + \cdots + w_d x_{id}$$

= $w^T x_i$

• To predict, we take the sign (i.e., closer '-1' or '+1'?):

$$y_i = \text{Sign}(w^T x_i)$$

 $y_i = \text{Sign}(w^T x_i)$
 $y_i = -1 \text{ if } w_{x_i} < 0$

Classification Using Regression

- Can use regression tricks (basis, regularization) for classification.
- But, usual error functions do weird things:

Classification Using Regression

Classification Using Regression

0-1 Loss Function

The 0-1 loss function is the number of classification errors:
 Unlike regression, in classification it's reasonable that sign(w^Tx_i) = y_i.

- Unfortunately the 0-1 loss is non-convex in 'w'.
 - It's easy to minimize if a perfect classifier exists.
 - Otherwise, finding the 'w' minimizing 0-1 loss is a hard problem.
- Convex approximations to 0-1 loss:
 - Hinge loss (non-smooth) and logistic loss (smooth).

Hinge Loss and Support Vector Machines

• Hinge loss is given by:

$$f(w) = \sum_{j=1}^{n} \max_{x \neq 0} \sum_{j=1}^{n} |y_j| = \sum_{j=1}^{n} \max_{x \neq 0} \sum_{j=1}^{n} |y_j| = \sum_{j=1}^{n} \sum_{x \neq 1}^{n} \sum_{j=1}^{n} \sum_{x \neq 1}^{n} \sum_{j=1}^{n} \sum_{x \neq 1}^{n} \sum_{x \neq 1}^{n}$$

- Convex upper bound on number of classification errors.
- Solution will be a perfect classifier, if one exists.
- Support vector machine (SVM) is hinge loss with L2-regularization.

$$f(w) = \sum_{j=1}^{2} \max \{0, 1-y_i \ w^T x_i \} + \frac{1}{2} ||w||^2$$

- Next time we'll see that it "maximizes the margin".

Logistic Regression

• Logistic regression minimizes logistic loss:

$$f(w) = \sum_{i=1}^{n} \log(|+exp(-y_i w^T x_i))$$

• You can/should also add regularization:

$$f(w) = \sum_{i=1}^{n} \log(|+\exp(-y_i w^T x_i|)) + \frac{1}{2} ||w||^2$$

• Convex and differentiable: minimize this with gradient descent.

Logistic Regression and SVMs

- Logistic regression and SVMs are used EVERYWHERE!
- Why?
 - Training and testing are both fast.
 - It is easy to understand what the weights ' w_i ' mean.
 - With high-dimensional features and regularization, often good test error.
 - Otherwise, often good test error with RBF basis and regularization.
 - Smoother predictions than random forests.

Summary

- Convex functions an be identified using a few simple rules.
- Global vs. local features allows 'personalized' predictions.
- Classification using regression works if done right.
- 0-1 loss is the ideal loss, but is non-smooth and non-convex.
- Logistic regression uses a convex and smooth approximation to 0-1.
- Next time:
 - One more reason to use regularization, and how to find gold.

Bonus Slide: Perceptron Algorithm

• One of the first "learning" is the perceptron algorithm.

- Searches for a 'w' such that $w^T x_i > 0$ when $y_i = +1$, $w^T x_i < 0$ for $y_i = -1$.

- Perceptron Algorithm:
 - Start with $w^0 = 0$.
 - Go through examples in any order until you make a mistake predicting yⁱ.
 - Set $w^{t+1} = w^t + y_i x_i$.
 - Keep going through examples until you make no errors on training data.
- If a perfect classifier exists, this algorithm converges to one.
 - In fact, "perceptron mistaked bound" result says that number of mistakes is finite.