CPSC 340:
Machine Learning and Data Mining

Gradient Descent
Fall 2016
Admin

• Assignment 1:
 – Marks up this weekend on UBC Connect.

• Assignment 2:
 – 3 late days to hand it in Monday.

• Assignment 3:
 – Due Wednesday (so we can release solutions before the midterm).

• Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

• Corrections:
 – $w = X\backslash y$ does not compute the least squares estimate.
 – Only certain splines have an RBF representation.
Last Time: RBFs and Regularization

• We discussed radial basis functions:
 – Basis functions that depend on distances to training points:
 \[
 y_i = w_1 \exp\left(-\frac{||x_i - x_1||^2}{2\sigma^2}\right) + w_2 \exp\left(-\frac{||x_i - x_2||^2}{2\sigma^2}\right) + \ldots + w_n \exp\left(-\frac{||x_i - x_n||^2}{2\sigma^2}\right)
 \]
 \[
 = \sum_{j=1}^{n} w_j \exp\left(-\frac{||x_i - x_j||^2}{2\sigma^2}\right)
 \]
 – Flexible bases that can model any continuous function.

• We also discussed regularization:
 – Adding a penalty on the model complexity:
 \[
 f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{\lambda}{2} ||w||^2
 \]
 – Best parameter lambda almost always leads to improved test error.
 • L2-regularized least squares is also known as “ridge regression”.
Features with Different Scales

• Consider features with different scales:

<table>
<thead>
<tr>
<th>Egg (#)</th>
<th>Milk (mL)</th>
<th>Fish (g)</th>
<th>Pasta (cups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

• Should we convert to some standard ‘unit’?
 – It doesn’t matter for least squares:
 • $w_j \times (100 \text{ mL})$ gives the same model as $w_j \times (0.1 \text{ L})$
 • w_j will just be 1000 times smaller.
 – It also doesn’t matter for decision trees or naïve Bayes.
Features with Different Scales

• Consider features with different scales:

<table>
<thead>
<tr>
<th>Egg (#)</th>
<th>Milk (mL)</th>
<th>Fish (g)</th>
<th>Pasta (cups)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>250</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>250</td>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>150</td>
<td>0</td>
</tr>
</tbody>
</table>

• Should we convert to some standard ‘unit’?
 – It matters for k-nearest neighbours:
 • KNN will focus on large values more than small values.
 – It matters for regularized least squares:
 • Penalization $|w_j|$ means different things if features ‘j’ are on different scales.
Standardizing Features

• It is common to **standardize features**:
 – For each feature:
 1. Compute mean and standard deviation:
 \[
 \mu_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}, \quad \sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \mu_j)^2}
 \]
 2. Subtract mean and divide by standard deviation:
 \[
 \text{Replace } x_{ij} \text{ with } \frac{x_{ij} - \mu_j}{\sigma_j}
 \]
 – Means that change in \(w_j \) have **similar effect** for any feature \(j \).

• Should we **regularize the bias**?
 – No! The \(y \)-intercept can be anywhere, why encourage it to be close to zero?
 – Yes! Regularizing all variables makes solution unique and it easier to compute \(w \).
 – Compromise: regularize the bias by a **smaller amount** than other variables?

 \[
 \frac{1}{2} \| Xw - y \|^2 + \sum_{j=1}^{m} \lambda_j w_j
 \]
Standardizing Target

• In regression, we sometimes standardize the targets y_i.
 – Puts targets on the same standard scale as standardized features:
 $$\text{Replace } y_i \text{ with } \frac{y_i - \mu_y}{\sigma_y}$$

• With standardized target, setting $w = 0$ predicts average y_i:
 – High regularization makes us predict closer to the average value.

• Other common transformations of y_i are logarithm/exponent:
 $$\text{Use } \log(y_i) \text{ or } \exp(\gamma y_i)$$
 – Makes sense for geometric/exponential processes.
Ridge Regression Calculation

Objective: $$f(w) = \frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} w^Tw$$

Gradient: $$\nabla f(w) = X^T X w - X^T y + \lambda w$$

Set $$\nabla f(w) = 0$$:

$$X^T X w + \lambda w = X^T y$$

or

$$X^T X w + \lambda I w = X^T y$$

or

$$(X^T X + \lambda I) w = X^T y$$

Pre-multiply by $$(X^T X + \lambda I)^{-1}$$ which always exists:

$$(X^T X + \lambda I)^{-1} (X^T X + \lambda I) w = (X^T X + \lambda I)^{-1} X^T y$$

So

$$w = (X^T X + \lambda I)^{-1} X^T y$$

Matlab:

$$w = (X^T X + \lambda I + \text{eye}(d))^\dagger \backslash (X^T y)$$
Least Squares with Outliers

• Consider least squares problem with outliers:

\[x \leftarrow \text{"outlier" that doesn't follow trend} \]

http://setosa.io/ev/ordinary-least-squares-regression
Least Squares with Outliers

• Consider least squares problem with outliers:

\[x \leftarrow \text{"outlier" that doesn't follow trend} \]

• Least squares is very sensitive to outliers.
Least Squares with Outliers

• Squaring error shrinks small errors, and **magnifies large errors**:

 ![Diagram showing least squares minimizes vertical distance squared.]

• Outliers (large error) influence ‘w’ much more than other points.
Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.
 – Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.
Robust Regression

- Robust regression objectives put less focus on large errors (outliers).
- For example, use absolute error instead of squared error:
 \[f(w) = \sum_{i=1}^{n} |w^T x_i - y_i| \]
- Now decreasing ‘small’ and ‘large’ errors is equally important.
- Instead of minimizing L2-norm, minimizes L1-norm of residuals:
 - Least squares:
 \[f(w) = \frac{1}{2} \|Xw - y\|^2 \]
 - Least absolute error:
 \[f(w) = \|Xw - y\|_1 \]
Least Squares with Outliers

- Least squares is very sensitive to outliers.

Linear model w minimizing $f(w) = \frac{1}{2} \| Xw - y \|^2$.
Least Squares with Outliers

- Absolute error is more robust to outliers:

\[f(w) = \| Xw - y \|_1 = \sum_{i=1}^{n} |w^T x_i - y_i | \]
Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:
 – We can’t take the gradient at zero.
 – Generally, harder to minimize non-smooth than smooth functions.
 – Could solve as ‘linear program’, but harder than ‘linear system’.
Smooth Approximations to the L1-Norm

• There are differentiable approximations to absolute value.
• For example, the Huber loss:

\[f(w) = \sum_{i=1}^{n} h(w^T x_i - y_i) \]

\[h(r_i) = \begin{cases}
\frac{1}{2} r_i^2 & \text{for } |r_i| \leq \varepsilon \\
\varepsilon (|r_i| - \frac{1}{2} \varepsilon) & \text{otherwise}
\end{cases} \]

• Setting \(\nabla f(x) = 0 \) does not give a linear system.
• But we can minimize ‘f’ using gradient descent:
 – Algorithm for finding local minimum of a differentiable function.
Gradient Descent for Finding a Local Minimum

- Gradient descent is an iterative optimization algorithm:
 - It starts with a “guess” w^0.
 - It uses w^0 to generate a better guess w^1.
 - It uses w^1 to generate a better guess w^2.
 - It uses w^2 to generate a better guess w^3.
 ...
 - The limit of w^t as ‘t’ goes to ∞ has $\nabla f(w^t) = 0$.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.

![diagram]

- $f(w)$
- $f(w^0)$
- w, w^* (minimizer)
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.

![Diagram showing gradient descent](attachment://gradient_descent_diagram.png)
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is based on a simple observation:
 - Given parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.

![Diagram of gradient descent](attachment:gradient_descent_diagram.png)
Gradient Descent for Finding a Local Minimum

- Gradient descent is based on a simple observation:
 - Give parameters ‘w’, the direction of largest decrease is $-\nabla f(w)$.

Now the slope $\nabla f(w^4)$ is positive so we move in the negative direction.
Gradient Descent for Finding a Local Minimum

- **Gradient descent** is an *iterative optimization* algorithm:
 - We start with some initial guess, \(w^0 \).
 - Generate new guess by *moving in the negative gradient direction*:
 \[
 w^1 = w^0 - \alpha^0 \nabla f(w^0)
 \]
 (scalar \(\alpha^0 \) is the `step size', we decrease ‘f’ for small enough \(\alpha^0 \))
 - Repeat to *successively refine the guess*:
 \[
 w^{t+1} = w^t - \alpha^t \nabla f(w^t) \quad \text{for } t = 1, 2, 3, \ldots
 \]
 - Stop if not making progress or \(\| \nabla f(w^t) \| \leq \xi \) (Some small scalar. Approximate local minimum)
• Under weak conditions, **algorithm converges to a local minimum.**
Convex Functions

• Is finding a local minimum good enough?
 – For least squares and Huber loss this is enough: they are convex functions.

• A function is convex if the area above the function is a convex set.
 – All values between any two points above function stay above function.
Convex Functions

- All local minima of convex functions are also global minima.

Proof by contradiction:

Consider a local minimum

If this is not global minimum, there must a smaller value.

But this contradicts that we are at a local minimum.

By convexity we can move along line to global minimum and decrease objective.

- Gradient descent finds a global minimum on convex functions.
- Next time: how do we know if a function is convex?
Gradient Descent

• Least squares via normal equations vs. gradient descent:
 – Normal equations cost $O(nd^2 + d^3)$.

 Forming X^TX costs $O(nd^2)$ and solving a $d \times d$ linear system costs $O(d^3)$.
 – Gradient descent costs $O(ndt)$ to run for ‘t’ iterations.

 Computing $\nabla F(w) = X^T X w - X^T y$ only costs $O(nd)$.

 – Gradient descent can be faster when ‘d’ is very large:
 • Faster if solution is “good enough” for $(t < d)$ and $(t < d^2/n)$.

• Improving on gradient descent: Nesterov and Newton method.
 – For L2-regularized least squares, there is also “conjugate” gradient.
Motivation for Considering Worst Case
‘Brittle’ Regression

• What if you really care about getting the outliers right?
 – You want best performance on worst training example.
 – For example, if in worst case the plane can crash.

• In this case you can use something like the infinity-norm:

\[f(w) = \| Xw - y \|_\infty \]

 where \(\| r \|_\infty = \max_i \{ |r_i| \} \)

• Very sensitive to outliers (brittle), but worst case will be better.
Log-Sum-Exp Function

• As with the L_1-norm, the L_∞-norm is convex but non-smooth:
 – We can fit it with gradient descent using a smooth approximation.

• Log-sum-exp function is a smooth approximation to max function:

\[
\max_i \{z_i\} \approx \log\left(\sum_i \exp(z_i)\right)
\]

• Intuition:
 – $\sum_i \exp(z_i) \approx \max_i \exp(z_i)$, as largest element is magnified exponentially.
 – Recall that $\log(\exp(z_i)) = z_i$.

• Notation alert: when I write “log” I always mean natural logarithm:
 \[
 \log(\exp(\alpha)) = \alpha
 \]
Summary

- Robust regression using L1-norm/Huber is less sensitive to outliers.
- Gradient descent finds local minimum of differentiable function.
- Convex functions do not have non-global local minima.
- Log-Sum-Exp function: smooth approximation to maximum.

Next time:
- Finding ‘important’ e-mails, and beating naïve Bayes on spam filtering.
Bonus Slide: Invertible Matrices and Regularization

• Unlike least squares where X^TX may not be invertible, the matrix $(X^TX + \lambda I)$ is always invertible.

• We prove this by showing that $(X^TX + \lambda I)$ is positive-definite, meaning that $v^T(X^TX + \lambda I)v > 0$ for all non-zero v.

(Positive-definite matrices are invertible.)

With a generic v such that $v \neq 0$, we have

$$v^T(X^TX + \lambda I)v = v^TX^TXv + \lambda v^Tv$$

$$= ||Xv||^2 + \lambda \sum_{j=1}^{d} v_j^2$$

$$\geq 0 \quad \forall v \quad > 0 \quad \text{since } v \neq 0.$$
Bonus Slide: Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:

$$\|x_w - y\|_\infty = \max_i \sum_j |w^T x_i - y_i|$$

$$= \max_i \sum_j \max \{w^T x_i - y_i, y_i - w^T x_i\}^2$$

Since \(|z| = \max \{z, -z\} \)

$$= \log \left(\sum_{i=1}^n \exp (w^T x_i - y_i) + \sum_{i=1}^n \exp (y_i - w^T x_i) \right)$$

Using log-sum-exp to approximate "max" over \(2n\) terms.
Bonus Slide: Log-Sum-Exp Numerical Trick

- Numerical problem with log-sum-exp is that \(\exp(z_i) \) might overflow.
 - For example, \(\exp(100) \) has more than 40 digits.

- **Implementation ‘trick’**: Let \(\beta = \max_i \sum z_i \)

\[
\begin{align*}
\log \left(\sum_i \exp(z_i) \right) &= \log \left(\sum_i \exp(z_i - \beta + \beta) \right) \\
&= \log \left(\sum_i \exp(z_i - \beta) \exp(\beta) \right) \\
&= \log \left(\exp(\beta) \sum_i \exp(z_i - \beta) \right) \\
&= \log(\exp(\beta)) + \log \left(\sum_i \exp(z_i - \beta) \right) \\
&= \beta + \log(\sum_i \exp(z_i - \beta)) \\
&\leq 1 \text{ so no overflow}
\end{align*}
\]
Question from class: "Can we use \(w^{t+1} = w^t - \frac{1}{\| \nabla f(w^t) \|} \nabla f(w^t) \) \n
This will work for a while, but notice that

\[
\| w^{t+1} - w^t \| = \| \frac{1}{\| \nabla f(w^t) \|} \nabla f(w^t) \| \\
= \frac{1}{\| \nabla f(w^t) \|} \| \nabla f(w^t) \| \\
= 1
\]

So the algorithm never converges
Bonus Slide: Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient descent should work for non-smooth problems?”
 – Counter-example from Bertsekas’ “Nonlinear Programming”

Figure 6.3.8. Contours and steepest ascent path for the function of Exercise 6.3.8.