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Admin

• Assignment 1:
– Marks up this weekend on UBC Connect.

• Assignment 2:
– 3 late days to hand it in Monday.

• Assignment 3:
– Due Wednesday (so we can release solutions before the midterm).

• Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

• Corrections:
– w = X\y does not compute the least squares estimate.

– Only certain splines have an RBF representation.



Last Time: RBFs and Regularization

• We discussed radial basis functions:

– Basis functions that depend on distances to training points:

– Flexible bases that can model any continuous function.

• We also discussed regularization:

– Adding a penalty on the model complexity:

– Best parameter lambda almost always leads to improved test error.

• L2-regularized least squares is also known as “ridge regression”.



Features with Different Scales

• Consider features with different scales:

• Should we convert to some standard ‘unit’?
– It doesn’t matter for least squares:

• wj*(100 mL) gives the same model as wj*(0.1 L)

• wj will just be 1000 times smaller. 

– It also doesn’t matter for decision trees or naïve Bayes.

Egg (#) Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0



Features with Different Scales

• Consider features with different scales:

• Should we convert to some standard ‘unit’?
– It matters for k-nearest neighbours:

• KNN will focus on large values more than small values.

– It matters for regularized least squares:
• Penalization |wj| means different things if features ‘j’ are on different scales.

Egg (#) Milk (mL) Fish (g) Pasta
(cups)

0 250 0 1

1 250 200 1

0 0 0 0.5

2 250 150 0



Standardizing Features

• It is common to standardize features:
– For each feature:

1. Compute mean and standard deviation:

2. Subtract mean and divide by standard deviation:

– Means that change in ‘wj’ have similar effect for any feature ‘j’.

• Should we regularize the bias?
– No! The y-intercept can be anywhere, why encourage it to be close to zero?

– Yes! Regularizing all variables makes solution unique and it easier to compute ‘w’.

– Compromise: regularize the bias by a smaller amount than other variables?



Standardizing Target

• In regression, we sometimes standardize the targets yi.

– Puts targets on the same standard scale as standardized features:

• With standardized target, setting w = 0 predicts average yi:

– High regularization makes us predict closer to the average value.

• Other common transformations of yi are logarithm/exponent:

– Makes sense for geometric/exponential processes. 



Ridge Regression Calculation



Least Squares with Outliers

• Consider least squares problem with outliers:

http://setosa.io/ev/ordinary-least-squares-regression

http://setosa.io/ev/ordinary-least-squares-regression


Least Squares with Outliers

• Consider least squares problem with outliers:

• Least squares is very sensitive to outliers.



Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.



Least Squares with Outliers

• Squaring error shrinks small errors, and magnifies large errors:

• Outliers (large error) influence ‘w’ much more than other points.

– Good if outlier means ‘plane crashes’, bad if it means ‘data entry error’.



Robust Regression

• Robust regression objectives put less focus large errors (outliers).

• For example, use absolute error instead of squared error:

• Now decreasing ‘small’ and ‘large’ errors is equally important.

• Instead of minimizing L2-norm, minimizes L1-norm of residuals:



Least Squares with Outliers

• Least squares is very sensitive to outliers.



Least Squares with Outliers

• Absolute error is more robust to outliers:



Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:

– We can’t take the gradient at zero.

– Generally, harder to minimize non-smooth than smooth functions.

– Could solve as ‘linear program’, but harder than ‘linear system’.



Smooth Approximations to the L1-Norm

• There are differentiable approximations to absolute value.

• For example, the Huber loss:

• Setting 𝛻f(x) = 0 does not give a linear system.

• But we can minimize ‘f’ using gradient descent:
– Algorithm for finding local minimum of a differentiable function.



Gradient Descent for Finding a Local Minimum 

• Gradient descent is an iterative optimization algorithm:

– It starts with a “guess” w0.

– It uses w0 to generate a better guess w1.

– It uses w1 to generate a better guess w2.

– It uses w2 to generate a better guess w3.
…

– The limit of wt as ‘t’ goes to ∞ has ∇ f(wt) = 0.



Gradient Descent for Finding a Local Minimum 

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).
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Gradient Descent for Finding a Local Minimum 

• Gradient descent is based on a simple observation:

– Give parameters ‘w’, the direction of largest decrease is −𝛻 f(w).



Gradient Descent for Finding a Local Minimum 

• Gradient descent is an iterative optimization algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

(scalar 𝛼0 is the `step size’, we decrease ‘f’ for small enough 𝛼0)

– Repeat to successively refine the guess:

– Stop if not making progress or 



Gradient Descent in 2D

• Under weak conditions, algorithm converges to a local minimum.



Convex Functions

• Is finding a local minimum good enough?

– For least squares and Huber loss this is enough: they are convex functions.

• A function is convex if the area above the function is a convex set.

– All values between any two points above function stay above function.



Convex Functions

• All local minima of convex functions are also global minima.

– Gradient descent finds a global minimum on convex functions.

– Next time: how do we know if a function is convex?



Gradient Descent

• Least squares via normal equations vs. gradient descent:

– Normal equations cost O(nd2 + d3).

– Gradient descent costs O(ndt) to run for ‘t’ iterations.

– Gradient descent can be faster when ‘d’ is very large:

• Faster if solution is “good enough” for (t < d) and (t < d2/n).

• Improving on gradient descent: Nesterov and Newton method.

– For L2-regularized least squares, there is also “conjugate” gradient.



Motivation for Considering Worst Case



‘Brittle’ Regression

• What if you really care about getting the outliers right?
– You want best performance on worst training example.

– For example, if in worst case the plane can crash.

• In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.



Log-Sum-Exp Function

• As with the L1-norm, the L∞-norm is convex but non-smooth:
– We can fit it with gradient descent using a smooth approximation.

• Log-sum-exp function is a smooth approximation to max function:

• Intuition: 
– ∑𝑖 exp 𝑧𝑖

≈ max
𝑖

exp(𝑧𝑖), as largest element is magnified exponentially.

– Recall that log(exp(zi)) = zi.

• Notation alert: when I write “log” I always mean natural logarithm:



Summary

• Robust regression using L1-norm/Huber is less sensitive to outliers.

• Gradient descent finds local minimum of differentiable function.

• Convex functions do not have non-global local minima.

• Log-Sum-Exp function: smooth approximation to maximum.

• Next time:

– Finding ‘important’ e-mails, and beating naïve Bayes on spam filtering.



Bonus Slide: Invertible Matrices and Regularization

• Unlike least squares where XTX may not be invertible, 
the matrix (XTX + λI) in always invertible.

• We prove this by showing that (XTX + λI) is positive-definite, 
meaning that vT(XTX + λI)v > 0 for all non-zero ‘v’.

(Positive-definite matrices are invertible.)



Bonus Slide: Log-Sum-Exp for Brittle Regression

• To use log-sum-exp for brittle regression:



Bonus Slide: Log-Sum-Exp Numerical Trick

• Numerical problem with log-sum-exp is that exp(zi) might overflow.

– For example, exp(100) has more than 40 digits.

• Implementation ‘trick’:



Bonus Slide: Normalized Steps



Bonus Slide: Gradient Descent for Non-Smooth?

• “You are unlikely to land on a non-smooth point, so gradient 
descent should work for non-smooth problems?”

– Counter-example from Bertsekas’ “Nonlinear Programming”


