CPSC 340: Machine Learning and Data Mining

Regularization Fall 2016

Admin

Ignore Assignment 1 Marks on Connect.

- Assignment 2:
 - 2 late days to hand it in Friday, 3 for Monday.
- Assignment 3 is out.
 - Due next Wednesday (so we can release solutions before the midterm).
- Tutorial room change: T1D (Monday @5pm) moved to DMP 101.

- Assignment tips:
 - Put your name and ID numbers on your assignments.
 - Do the assignment from this year.

Last Time: Normal Equations and Change of Basis

• Last time we derived normal equations:

 $X^{T}X_{W} = X^{T}Y$

- Solutions 'w' minimize squared error in linear model.

- We also discussed change of basis:
 - E.g., polynomial basis:

Replace
$$X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 with $Z = \begin{bmatrix} 1 & x_1 & (x_1)^2 & \dots & (x_n)^p \\ 1 & x_2 & (x_2)^2 & \dots & (x_n)^p \\ \vdots & \vdots & \vdots & \vdots \\ 1 & x_n & (x_n)^2 & \dots & (x_n)^n \end{bmatrix}$

- Let's you fit non-linear models with linear regression.

$$y_i = w^T z_i = w_0 + w_1 x_i + w_2 x_i^2 + w_3 x_i^3 + \dots + w_p x_i^p$$

Parametric vs. Non-Parametric Bases

- Polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.

Parametric vs. Non-Parametric Bases

- Polynomials are not the only possible bases:
 - Exponentials, logarithms, trigonometric functions, etc.
 - The right basis will vastly improve performance.
 - But the right basis may not be obvious.
- What happens if we use the wrong basis?
 - As 'n' increases, we can fit 'w' more accurately.
 - But eventually more data doesn't help if basis isn't "flexible" enough.
- Alternative is non-parametric bases:
 - Size of basis (number of features) grows with 'n'.
 - Model gets more complicated as you get more data.
 - You can model very complicated functions where you don't know the right basis.

Non-Parametric Basis: RBFs

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.

$$Re_{p}|_{ace} = \begin{cases} g(||x_{1}^{-}x_{1}||) g(||x_{1}^{-}x_{2}||) \cdots g(||x_{n}^{-}x_{n}||) \\ g(||x_{2}^{-}x_{n}||) g(||x_{2}^{-}x_{n}||) \\ g(||x_{n}^{-}x_{1}||) g(||x_{n}^{-}x_{2}||) \cdots g(||x_{n}^{-}x_{n}||) \\ g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||) \\ g(||x_{n}^{-}x_{n}||) g(||x_{n}^{-}x_{n}||)$$

Non-Parametric Basis: RBFs

- Radial basis functions (RBFs):
 - Non-parametric bases that depend on distances to training points.

Non-Parametric Basis: RBFs Wz I ++ ~ 4 | $+ W_{2}$ + w, | Cubic basis Wo Polynomial basis represents function as sum of global polynomials. Wzı Wz + w, F Ganssian RBFs: yi = Wo Gaussian RBFs represent function as sum of local "Lumps"

- Gaussian RBFs are universal approximators (compact subets of \mathbb{R}^d)
 - Can approximate any continuous function to arbitrary precision.
 - Achieve irreducible error as 'n' goes to infinity.

Interpolation vs. Extrapolation

Non-Parametric Basis: RBFs

• Least squares with Gaussian RBFs for different σ values:

Last Time: Polynomial Degree and Training vs. Tesing

- As the polynomial degree increases, the training error goes down.
- But training error becomes worse approximation test error.

- Same effect as we decrease variance in Gaussian RBF.
- But what if we need a complicated model?

http://www.cs.ubc.ca/~arnaud/stat535/slides5_revised.pdf

Controlling Complexity

- Usually "true" mapping from x_i to y_i is complex.
 Might need high-degree polynomial or small σ² in RBFs.
- But complex models can overfit.
- So what do we do???

- There are many possible answers:
 - Model averaging: average over multiple models to decrease variance.
 - Regularization: add a penalty on the complexity of the model.

L2-Regularization

"lambda"

• Standard regularization strategy is L2-regularization:

 $f(w) = \frac{1}{2} ||Xw - y||^2 + \frac{1}{2} ||w||^2 \quad \text{or} \quad f(w) = \frac{1}{2} \sum_{j=1}^{2} (w^T x_j - y_j)^2 + \frac{1}{2} \sum_{j=1}^{d} w_j^2$

- Intuition: large w_i tend to lead to overfitting (cancel each other).
- So minimize squared error plus penalty on L2-norm of 'w'.
 - This objective balances getting low error vs. having small slope 'w'.
 - You can increase the error if it makes 'w' much smaller.
 - Reduces overfitting.
 - Regularization parameter $\lambda > 0$ controls "strength" of regularization.
 - Large λ puts large penalty on slope.

L2-Regularization

• Standard regularization strategy is L2-regularization:

 $f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||w||^2 \quad \text{or} \quad f(w) = \frac{1}{2} \sum_{i=1}^{2} (w^T x_i - y_i)^2 + \frac{1}{2} \sum_{j=1}^{2} w_j^2$

- In terms of fundamental trade-off:
 - Regularization increases training error.
 - Regularization makes training error better approximation of test error.
- How should you choose λ ?
 - Theory: as 'n' grows λ should be in the range O(1) to O(n^{1/2}).
 - Practice: optimize validation set or cross-validation error.
 - This almost always decreases the test error.

L2-Regularization

• Standard regularization strategy is L2-regularization:

$$f(w) = \frac{1}{2} ||X_w - y||^2 + \frac{1}{2} ||w||^2 \quad \text{or} \quad f(w) = \frac{1}{2} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \frac{1}{2} \sum_{j=1}^{n} w_j^2$$

• Equivalent to minimizing squared error with L2-norm constraint:

Connection to Occam's razor

٢

Why use L2-Regularization?

- It's a weird thing to do, but Mark says "always use regularization".
 "Almost always decreases test error" should already convince you.
- Mike says "try to make the objective function reflect test error"
 Create an optimization problem that you actually want to solve.
- But here are 6 more reasons:
 - 1. Solution 'w' is unique.
 - 2. $X^T X$ does not need to be invertible.
 - 3. Less sensitive to changes in X or y.
 - 4. Makes algorithms for computing 'w' converge faster.
 - 5. Stein's paradox: if $d \ge 3$, 'shrinking' moves us closer to 'true' w.
 - 6. Worst case: just set λ small and get the same performance.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.

Shrinking is Weird and Magical

- We throw darts at a target:
 - Assume we don't always hit the exact center.
 - Assume the darts follow a symmetric pattern around center.
- Shrinkage of the darts :
 - 1. Choose some arbitrary location '0'.
 - 2. Measure distances from darts to '0'.
 - 3. Move misses towards '0', by *small* amount proportional to distances.
- If small enough, darts will be closer to center on average.

Visualization of the related Stein's paradox: https://www.naftaliharris.com/blog/steinviz

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

Example:
Find regularized value of
$$w'$$
 for particular λ and α by
minimizing $f(w) = \frac{1}{2} || Zw - y||^2 + \frac{2}{2} ||w||^2$
RBF basis. with variance α
And choose λ and α to minimize
 $\frac{1}{2} || \hat{Z} \hat{w} - \hat{y} ||^2$
Validation \mathcal{L} Regularized value of w
set

RBFs, Regularization, and Validation

- A model that is hard to beat:
 - RBF basis with L2-regularization and cross-validation to choose σ and λ .
 - Flexible non-parametric basis, magic of regularization, and tuning for test error!

- Can add bias or linear/poly basis to do better away from data.
- Expensive at test time: need distance to all training examples.

Summary

- Radial basis functions:
 - Non-parametric bases that can model any function.
- Regularization:
 - Adding a penalty on model complexity.
 - Improves test error because it is magic.
- L2-regularization: penalty on L2-norm of regression weights 'w'.

- Next time:
 - The most important algorithm in machine learning.

Bonus Slide: Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

Bonus Slide: Predicting the Future

- In principle, we can use any features x_i that we think are relevant.
- This makes it tempting to use time as a feature, and predict future.

https://overthehillsports.wordpress.com/tag/hicham-el-guerrouj/le

Bonus Slide: Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction

https://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gi

Bonus Slide: Predicting 100m times 400 years in the future?

Male 100 m Sprint Prediction

http://plus.maths.org/content/sites/plus.maths.org/files/articles/2011/usain/graph2.gn http://www.washingtonpost.com/blogs/london-2012-olympics/wp/2012/08/08/report-usain-bolt-invited-to-tryout-for-manchester-united/

Bonus Slide: No Free Lunch, Consistency, and the Future This model also fits data well. tast synares seems like a good fit. lfirst available Son the other hand, training error is likely to approximate test error in mensurent.

Bonus Slide: Ockham's Razor vs. No Free Lunch

- Ockham's razor is a problem-solving principle:
 - "Among competing hypotheses, the one with the fewest assumptions should be selected."
 - Suggests we should select linear model.
- Fundamental theorem of ML:
 - If training same error, pick model less likely to overfit.
 - Formal version of Occam's problem-solving principle.
 - Also suggests we should select linear model.
- No free lunch theorem:
 - There *exists possible datasets* where you should select the green model.

Bonus Slide: No Free Lunch, Consistency, and the Future Let's Collect more data. 6 ()

timp

mensurement

Bonus Slide: No Free Lunch, Consistency, and the Future Collect even more data.

Bonus Slide: Application: Climate Models

- Has Earth warmed up over last 100 years? (Consistency zone)
 - Data clearly says 'yes'.

Will Earth continue to warm over next 100 years? (Really NFL zone)
 We should be more skeptical about models that predict future events.

Bonus Slide: Application: Climate Models

- So should we all become global warming skeptics?
- If we average over models that overfit in *indepednent* ways, we expect the test error to be lower, so this gives more confidence:

- We should be skeptical of individual models, but agreeing predictions made by models with different data/assumptions are more likely be true.
- If all near-future predictions agree, they are likely to be accurate.
- As we go further in the future, variance of average will be higher.

Bonus Slide: Splines in 1D

- For 1D interpolation, alternative to polynomials/RBFs are splines:
 - Use a polynomial in the region between each data point.
 - Constrain some derivatives of the polynomials to yield a unique solution.
- Most common example is cubic spline:
 - Use a degree-3 polynomial between each pair of points.
 - Enforce that f'(x) and f''(x) of polynomials agree at all point.
 - "Natural" spline also enforces f''(x) = 0 for smallest and largest x.
- Non-trivial fact: natural cubic splines are sum of:
 - Y-intercept.
 - Linear basis.
 - RBFs with $g(\alpha) = \alpha^3$.
 - Different than Gaussian RBF because it increases with distance.

Bonus Slide: Spline in Higher Dimensions

- Splines generalize to higher dimensions if data lies on a grid.
 For more general ("scattered") data, there isn't a natural generalization.
- Common 2D "scattered" data interpolation is thin-plate splines:
 - Based on curve made when bending sheets of metal.
 - Corresponds to RBFs with $g(\alpha) = \alpha^2 \log(\alpha)$.
- Natural splines and thin-plate splines: special cases of "polyharmonic" splines:
 - Less sensitive to parameters than Gaussian RBF.