CPSC 340:
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Linear Least Squares
Fall 2016



Admin

* Assignment 2 is due Friday:
— You should already be started!
— 1 late day to hand it in on Wednesday, 2 for Friday, 3 for next Monday.

* We will have tutorials on Tuesday/Wednesday of next week:

— Focusing on multivariate calculus in matrix notation.
* Tutorial room change: T1D (Monday @5pm) moved to DMP 101.



Column gives User-Product Matrix
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Clustering User-Product Matrix

 Normally think of clustering by rows (users):
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* We also find outliers by rows.



Clustering User-Product Matrix
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* Apply clustering to X'.



Association Rules

* Association rules (S=>T): all ‘1" in cluster S => all ‘1’ in cluster T.
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Amazon Product Recommendation

* Amazon product recommendation works by columns:
— Conceptually, you take the user-product matrix:
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— Find similar products as nearest neighbours among products.
* Cosine similarity used as “distance”.



End of Part 2: Key Concepts

* We focused on 3 unsupervised learning tasks:
— Clustering.

e K-means algorithm (and using it for vector quantization).

* Density-based clustering (and region-based pruning for finding close points).

* Hierarchical clustering (and agglomerative algorithm for constructing trees).
— Outlier Detection.

e Surveyed common approaches (and said that problem is ill-defined).

— Association rules.
* A priori algorithm (for finding rules with high support and confidence).
* Amazong product recommendation (for huge datasets).



Supervised Learning Round 2: Regression

 We're going to revisit supervised learning:
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* Previously, we considered classification:

— We assumed y. was discrete: y, = ‘spam’ or y, = ‘not spam’.
* Now we’re going to consider regression:

— We allow y, to be numerical: y, = 10.34cm.



Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:
— Does number of lung cancer deaths change with number of cigarettes?
— Does number of skin cancer deaths change with latitude?

=kin cancer mortalityversus State latitude
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Example: Dependent vs. Explanatory Variables

 We want to discover relationship between numerical variables:

— Does number of lung cancer deaths change with number of cigarettes?

— Does number of skin cancer deaths change with latitude?

— Does number of gun deaths change with gun ownership?

20

Gun ownership vs. gun deaths, by state
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Handling Numerical Labels

* One way to handle numerical y.: discretize.
— E.g., for ‘age’ could we use {‘age < 20’, 20 < age < 30’, ‘age > 30'}.
— Now we can apply methods for classification to do regression.
— But coarse discretization loses resolution.
— And fine discretization requires lots of data.

* We could make regression versions of classification methods:

— Next time: regression trees, generative models, non-parametric models.

* Today: one of oldest, but still most popular/important methods:
— Linear regression based on squared error.
— Very interpretable and the building block for more-complex methods.



Linear Regression in 1 Dimension

Assume we only have 1 feature (d = 1):
— E.g., x. is number of cigarettes and y, is number of lung cancer deaths.

Linear regression models vy, is a linear function of x::
>/,' = WX

The parameter ‘w’ is the weight or regression coefficient of x..
As x. changes, slope ‘w’ affects the rate that y, increases/decreases:

— Positive ‘W’: y; increase as x; increases.
— Negative ‘w’: y, decreases as x; increases.



Linear Regression in 1 Dimension
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Least Squares Objective

* Our linear model is given by:
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* So we make predictions for a new example by using:
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e But we can’t use the same error as before:
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Least Squares Objective

* We need a way to evaluate numerical error.

* Classic way to set slope ‘W’ is minimizing sum of squared errors:
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* There are some justifications for this choice. valne For exumpl

— Assuming errors are Gaussian or using ‘central limit theorem'.

* But usually, it is done because it is easy to compute.



Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Least Squares Objective

e Classic way to set slope ‘W’ is minimizing sum of squared errors:
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Minimizing a Differential Function

 Math 101 approach to minimizing a differentiable function f':
1. Take the derivative of .
2. Find points ‘w’ where the derivative f’'(w) is equal to O.

3. Choose the smallest one (but check that f"’(w) is positive).
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Finding Least Squares Solution
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Motivation: Combining Explanatory Variables

Smoking is not the only contributor to lung cancer.
— For example, environmental factors like exposure to asbestos.

How can we model the combined effect of smoking and asbestos?
A simple way is with a 2-dimensional linear function:
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We have a weight w, for feature ‘1’ and w, for feature 2".
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Least Squares in 2-D



Least Squares in 2-Dimensions
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Least Squares in d-Dimensions

* If we have ‘d’ features, the d-dimensional linear model is:
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Weird Notation Alert

* In this course, all vectors are assumed to be column-vectors:
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* So w'x: is a scalar:
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* But our notation is weird: assume row ‘i’ of X’ is elements of x..

— So rows of ‘X’ are actually transpose of column-vector x::
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Least Squares in d-Dimensions

 The linear least squares model in d-dimensions minimizes:

n - 2
f(w)téf(w x,-‘y,-) g/l |
= \"\’" ! (:/rmr\ s still the

| 1

‘)/e c')(ftbr\ 1_5

vosh ' f)? e
a V;“L:;V (her PfOJMof Sum of wawec} a(’ mes
l
T of 'w' anl /x;' be tween "‘frw‘ Vi and
i - y / a h . -t 7
(llnfﬁ (OW'OV\G*I)" O‘F 'F-@ 71(/‘/?5) O\Af /){eCJ[C f“’/\ lei

* How do we find the best vector ‘w’?
— Set the derivative of each variable (“partial derivative”) to 07



Partial Derivatives
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Least Squares in d-Dimensions
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 Computing the partial derivative:
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Gradient and Critical Points in d-Dimensions

* Generalizing “set the derivative to 0 and solve” in d-dimensions:

— Find ‘w” where the gradient vector equals the zero vector.

* Gradient is vector with partial derivative ‘j’ in position j’:
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Summary

Regression considers the case of a numerical y..

Least squares is a classic method for fitting linear models.
— With 1 feature, it has a simple closed-form solution.

Gradient is vector containing partial derivatives of all variables.
Linear system of equations gives least squares with ‘d” features.

Next time: non-linear regression.



