CPSC 340:
Machine Learning and Data Mining

Outlier Detection
Fall 2016
Admin

• Assignment 1 solutions will be posted after class.
• Assignment 2 is out:
 – Due next Friday, but start early!
• Calculus and linear algebra terms to review for next week:
 – Vector addition and multiplication: $ax + \beta y$.
 – Inner-product: $x^T y$.
 – Matrix multiplication: Xw.
 – Solving linear systems: $Ax = b$.
 – Matrix inverse: X^{-1}.
 – Norms: $\|x\|$.
 – Gradient: $\nabla f(x)$.
 – Stationary points: $\nabla f(x) = 0$.
 – Convex functions: $f''(x) \geq 0$.
Last Time: Hierarchical Clustering

- We discussed **hierarchical clustering**:
 - Perform clustering at multiple scales.
 - Output is usually a **tree diagram** ("dendrogram").
 - Reveals much more structure in data.
 - Usually non-parametric:
 - At finest scale, every point is its own clusters.

- Important application is **phylogenetics**.
 - Scientific American yesterday:
 - “Scientists Trace Society’s Myths to Primordial Origins”
 - “Cosmic Hunt”: Man hunts animal that becomes constellation.

http://www.nature.com/nature/journal/v438/n7069/fig_tab/nature04338_F10.html
Motivating Example: Finding Holes in Ozone Layer

• The huge Antarctic ozone hole was “discovered” in 1985.

• It had been in satellite data since 1976:
 – But it was flagged and filtered out by quality-control algorithm.

https://en.wikipedia.org/wiki/Ozone_depletion
Outlier Detection

• **Outlier detection:**
 - Find observations that are “unusually different” from the others.
 - Also known as “anomaly detection”.
 - May want to remove outliers, or be interested in the outliers themselves.

• Some sources of outliers:
 - Measurement errors.
 - Data entry errors.
 - Contamination of data from different sources.
 - Rare events.
Applications of Outlier Detection

• Data cleaning.
• Security and fault detection (network intrusion, DOS attacks).
• Fraud detection (credit cards, stocks, voting irregularities).
• Detecting natural disasters (earthquakes, particularly underwater).
• Astronomy (find new classes of stars/planets).
• Genetics (identifying individuals with new/ancient genes).
Classes of Methods for Outlier Detection

1. Model-based methods.
2. Graphical approaches.
3. Cluster-based methods.
4. Distance-based methods.
5. Supervised-learning methods.

• Warning: this is the topic with the most ambiguous “solutions”.
 – Next week we’ll get back to topics with more concrete solutions.
Model-Based Outlier Detection

- **Model-based outlier detection:**
 1. Fit a probabilistic model.
 2. Outliers are **examples with low probability**.

- Simplest approach is **z-score**:
 - If $z_i > 3$, 97% of data is larger than x_i.

\[
 z_i = \frac{x_i - \mu}{\sigma}
\]

[Link to Outlier page on Wolfram MathWorld](http://mathworld.wolfram.com/Outlier.html)
Problems with Z-Score

• The z-score relies on mean and standard deviation:
 – These measure are sensitive to outliers.
 – Possible fixes: use quantiles, or sequentially remove worse outlier.

• The z-score also assumes that data is uni-modal...

http://mathworld.wolfram.com/Outlier.html
Global vs. Local Outliers

• Is the red point an outlier?
Global vs. Local Outliers

• Is the red point an outlier? What if add the blue points?
Global vs. Local Outliers

• Is the red point an outlier? What if add the blue points?

• Red point has the lowest z-score.
 – In the first case it was a “global” outlier.
 – In this second case it’s a “local” outlier:
 • It’s within the range of the data, but is far away from other points.

• In general, hard to give precise definition of ‘outliers’.
Global vs. Local Outliers

• Is the red point an outlier? What if add the blue points?

- Red point has the lowest z-score.
 - In the first case it was a “global” outlier.
 - In this second case it’s a “local” outlier:
 • It’s within the range of the data, but is far away from other points.

• In general, hard to give precise definition of ‘outliers’.
 - Can we have outlier groups?
Global vs. Local Outliers

• Is the red point an outlier? What if add the blue points?

• Red point has the lowest z-score.
 – In the first case it was a “global” outlier.
 – In this second case it’s a “local” outlier:
 • It’s within the range of the data, but is far away from other points.

• In general, hard to give precise definition of ‘outliers’.
 – Can we have outlier groups?
 – What about repeating patterns?
Graphical Outlier Detection

• Graphical approach to outlier detection:
 1. Look at a plot of the data.
 2. Human decides if data is an outlier.

• Examples:
 1. Box plot:
 • Visualization of quantiles/outliers.
 • Only 1 variable at a time.
Graphical Outlier Detection

• **Graphical approach** to outlier detection:
 1. Look at a plot of the data.
 2. Human decides if data is an outlier.

• Examples:
 1. Box plot.
 2. Scatterplot:
 • Can detect complex patterns.
 • Only 2 variables at a time.

http://mathworld.wolfram.com/Outlier.html
Graphical Outlier Detection

• **Graphical approach** to outlier detection:
 1. Look at a plot of the data.
 2. Human decides if data is an outlier.

• Examples:
 1. Box plot.
 2. Scatterplot.
 3. Scatterplot array:
 • Look at all combinations of variables.
 • But laborious in high-dimensions.
 • Still only 2 variables at a time.

Graphical Outlier Detection

- **Graphical approach** to outlier detection:
 1. Look at a plot of the data.
 2. Human decides if data is an outlier.

- **Examples:**
 1. Box plot.
 2. Scatterplot.
 4. Scatterplot of 2-dimensional PCA:
 - ‘See’ high-dimensional structure.
 - But **PCA** is sensitive to outliers.
 - There might be info in higher PCs.

We’ll cover PCA later in this course.

http://scienceblogs.com/gnxp/2008/08/14/the-genetic-map-of-europe/
Cluster-Based Outlier Detection

• Detect outliers based on clustering:
 1. Cluster the data.
 2. Find points that don’t belong to clusters.

• Examples:
 1. K-means:
 • Find points that are far away from any mean.
 • Find clusters with a small number of points.
Cluster-Based Outlier Detection

• Detect outliers based on clustering:
 1. Cluster the data.
 2. Find points that don’t belong to clusters.

• Examples:
 2. Density-based clustering:
 • Outliers are points not assigned to cluster.

Cluster-Based Outlier Detection

• Detect outliers based on clustering:
 1. Cluster the data.
 2. Find points that don’t belong to clusters.

• Examples:
 2. Density-based clustering.
 3. Hierarchical clustering:
 • Outliers take longer to join other groups.
 • Also good for outlier groups.

http://www.nature.com/nature/journal/v438/n7069/fig_tab/nature04338_F10.html
Distance-Based Outlier Detection

• Most of these approaches are based on distances.
• Can we skip the models/plot/clusters and directly use distances?
 – Directly measure of how close objects are to their neighbours.
• Examples:
 – How many points lie in a radius ‘r’?
 – What is distance to k^{th} nearest neighbour?

https://en.wikipedia.org/wiki/Local_outlier_factor
Global Distance-Based Outlier Detection: KNN

• **KNN outlier detection:**
 – For each point, compute the *average distance to its KNN*.
 – Sort these values.
 – Choose the biggest values as outliers.

• Goldstein and Uchida [2016]:
 – Compared 19 methods on 10 datasets.
 – KNN best for finding “global” outliers.
 – “Local” outliers better detected by LOF...

http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0152173
Local Distance-Based Outlier Detection

• As with density-based clustering, problem with differing densities:
 - Outlier o_2 has similar density as elements of cluster C_1.
 - Solution: “local outlier factor” (LOF) and variations like outlierness:
 - Is point “relatively” far away from its neighbours?

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
Outlierness

- Let $N_k(x_i)$ be the k-nearest neighbours of x_i.
- Let $D_k(x_i)$ be the average distance to k-nearest neighbours:
 \[D_k(x_i) = \frac{1}{k} \sum_{j \in N_k(x_i)} \|x_i - x_j\| \]
- **Outlierness** is ratio of $D_k(x_i)$ to average $D_k(x_j)$ for its neighbours ‘j’:
 \[O_k(x_i) = \frac{D_k(x_i)}{\frac{1}{k} \sum_{j \in N_k(x_i)} D_k(x_j)} \]
- If outlierness > 1, x_i is further away from neighbours than expected.
Outlierness Ratio

- Outlierness finds o_1 and o_2:

- More complicated data:

http://www.dbs.ifi.lmu.de/Publikationen/Papers/LOF.pdf
https://en.wikipedia.org/wiki/Local_outlier_factor
Outlierness with Close Clusters

• If clusters are close, outlierness gives unintuitive results:

• In this example, ‘p’ has higher outlierness than ‘q’ and ‘r’:
 – The green points are not part of the KNN list of ‘p’ for small ‘k’.

Outlierness with Close Clusters

• ‘Influenced outlierness’ (INFLO) ratio:
 – Include in denominator the ‘reverse’ k-nearest neighbours:
 • Points that have ‘p’ in KNN list.
 – Adds ‘s’ and ‘t’ from bigger cluster that includes ‘p’:

But still has problems:
 – Dealing with hierarchical clusters.
 – Yields many false positives if you have “global” outliers.
 – Goldstein and Uchida [2016] recommend just using KNN.

Supervised Outlier Detection

• Final approach to outlier detection is to use supervised learning:
 • $y_i = 1$ if x_i is an outlier.
 • $y_i = 0$ if x_i is a regular point.

• Let’s us use our great methods for supervised learning:
 – We can find very complicated outlier patterns.

• But it needs supervision:
 – We need to know what outliers look like.
 – We may not detect new “types” of outliers.
Summary

- **Outlier detection** is task of finding unusually different object.
 - A concept that is very difficult to define.
- **Model-based** methods check if objects are unlikely in fitted model.
- **Graphical** methods plot data and use human to find outliers.
- **Cluster-based** methods check whether objects belong to clusters.
- **Distance-based** methods measure relative distance to neighbours.
- **Supervised-learning** methods just turn it into supervised learning.

- Next time: “customers who bought this item also bought”.