CPSC 340: Machine Learning and Data Mining

Mark Schmidt

University of British Columbia, Fall 2016 www.cs.ubc.ca/~schmidtm/Courses/340-F16

Some images from this lecture are taken from Google Image Search.

Big Data Phenomenon

- We are collecting and storing data at an unprecedented rate.
- Examples:
 - News articles and blog posts.
 - YouTube, Facebook, and WWW.
 - Credit cards transactions and Amazon purchases.
 - Gene expression data and protein interaction assays.
 - Maps and satellite data.
 - Large hadron collider and surveying the sky.
 - Phone call records and speech recognition results.
 - Video game worlds and user actions.

Big Data Phenomenon

- What do you do with all this data?
 - Too much data to search through it manually.
- But there is valuable information in the data.
 - How can we use it for fun, profit, and/or the greater good?
- Data mining and machine learning are key tools we use to make sense of large datasets.

Data Mining

• Automatically extract useful knowledge from large datasets.

• Usually, to help with human decision making.

Machine Learning

 Using computer to automatically detect patterns in data and use these to make predictions or decisions.

ET & al C & 10.37

Working

Cancel

Speak now

Cancel

- Most useful when:
 - Don't have a human expert.
 - Humans can't explain patterns.
 - Problem is too complicated.

Data Mining vs. Machine Learning

- DM and ML are very similar:
 - Data mining often viewed as closer to databases.
 - Machine learning often viewed as closer AI.

- Less emphasis on 'correct' models and more focus on computation.

• Spam filtering:

- Credit card fraud detection:
- Product recommendation:

Google	in:spam					- Q	Mark		0 🙎
U		Click here	to enable deskto	p notifie	cations for Gmail. Learn more	Hide			
Gmail -		C	More *				1-6 of 6 <	>	\$ -
COMPOSE	D	elete all spam	messages now (m	nessages	s that have been in Spam more that	an 30 days v	vill be automatically	deleter	d)
COMPOSE		atoosa dahi	bashi	Fw: F	Recommen Pro. Kangavari			O	6:03 am
Inbox	☆ >>	atoosa dah	bashi	Fw: 0	Question about PHD			o	6:02 am
Important		Group3 Sal	es	[Sale	es #TCB-459-11366]: Irregular ac	tivity alert			5:42 am
Sent Mail		memberser	vicesNA	ualbe	rta Your credit card will expire	soon.			3:19 am
Drafts (1)	□ ☆ >>	MALTESAS	OFFICIAL CONF	El lists	[CFP] ARIEET-ADMMET-ISYSM	PARALLEL	CONFERENCES - C)	2:36 am
 > Circles 		MALTESAS		lists	[CFP] MALTESAS SCOPUS Q3	Journal Ba	ased Conferences a	11	10:01 pm

Transaction Date		Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

>

Customers Who Bought This Item Also Bought

• Motion capture:

• Optical character recognition and machine translation:

• Speech recognition:

• Face detection:

• Object detection:

KLAY THOMPSON

• Sports analytics:

• Personal Assistants:

• Medical imaging:

J:63

Self-driving cars:

• Scene completion:

• Image annotation:

a cat is sitting on a toilet seat logprob: -7.79

a display case filled with lots of different types of donuts logprob: -7.78

a group of people sitting at a table with wine glasses <code>logprob: -6.71</code>

Discovering new cancer subtypes:

• Automated Statistician:

2.4 Component 4 : An approximately periodic function with a period of 10.8 years. This function applies until 1643 and from 1716 onwards

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

• Mimicking artistic styles and inceptionism:

Horizon

Leaves

Towers & Pagodas

Birds & Insects

• "Deep dream":

• Fast physics-based animation:

• Mimicking art style in <u>video</u>.

• Beating human Go masters:

- Summary:
 - There is a lot you can do with a bit of statistics and a lot data/computation.
- But, this is not magic and we can only solve certain problems:
 - "The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data."
- Also, you should not use these methods blindly:
 - The future may not be like the past.
 - Associations do not imply causality.

Outline

- 1) Intro to Machine Learning and Data Mining:
- 2) Course Administrivia
- 3) Course Overview

CPSC 340 vs. CPSC 540

- There is also a graduate ML course, CPSC 540:
 - More advanced material.
 - More focus on theory/implementation, less focus on applications.
 - More prerequisites and higher workload.
- For almost all students, CPSC 340 is the right class to take:
 - CPSC 340 focuses on the most widely-used methods in practice.
 - CPSC 540 is intended as a continuation of CPSC 340.
 - You'll miss important topics if you skip CPSC 340.

Reasons NOT to take this class

- For many people, this course is a LOT of work.
 - Some people spend tens of hours per assignment.
- Compared to typical CS classes, there is a lot more math:
 - Requires linear algebra, probability, and multivariate calculus.
 - Course is harder this year because of new calculus requirement.
- Compared to non-CS classes, there is a lot more CS:
 - This is not a class about running other people's software packages.
 - You are going to make/modify implementations of methods.
- Instructor: this is only my second undergrad course.
- Matlab: next semester might use Python instead.

Webpage, Piazza, Office Hours, Tutorials

- Course homepage:
 - www.cs.ubc.ca/~schmidtm/Courses/340-F16
- Piazza for assignment/course questions:
 - www.piazza.com/ubc.ca/winterterm12016/cpsc340/home
 - Office hours:
 - Tuesday at 2-3 (ICICS 146) and 3:30-4:30 (DLC Table 4), Wednesdays 4-5 (ICICS X337)
 - Or by appointment.
- Optional weekly tutorials:
 - Start in second week of class (September 12).
 - Mondays 4-5 and 5-6, Tuesdays 4:30-5:30, and Wednesdays 9-10.
 - Cover mix of tutorial material and exercises to help with assignments.
 - You must be registered in a tutorial section to stay enrolled.

The Teaching Assistants (are outstanding)

• Reza Babanezhad

• Tian Qi (Ricky) Chen

• Issam Laradji

Robbie Rolin

• Alireza Shafaei

Moumita Roy Tora

Nasim Zolaktaf

Zainab Zolaktaf

Waiting List and Auditing

- The SSC currently lists this class as full at 160 students.
- But the room supports 188 students (possibly more)
- We're going to start registering people from the waiting list.
 - Being on the waiting list is the only way to get registered:
 - https://www.cs.ubc.ca/students/undergrad/courses/waitlists
 - You might be registered without being notified, be sure to check!
- Because the room is full, we may not have seats for auditors.
 - If there is space, I'll describe (light) auditing requirements then.

Textbooks

- No required textbook.
- I'll post relevant sections out of these books as optional readings:
 - Artificial Intelligence: A Modern Approach (Rusell & Norvig).
 - Introduction to Data Mining (Tan et al.).
 - The Elements of Statistical Learning (Hastie et al.).
 - Machine Learning: A Probabilistic Perspective (Murphy).
- List of related courses on the webpage, or you can use Google.

Assignments

- 6 Assignments worth 25% of final grade:
 - Written portion and Matlab programming.
 - Submitted as a PDF file using the Handin program.
 - You can have up to 4 total "late classes":
 - For example, if assignment is due on Wednesday:
 - Handing it in before Wednesday class is 0 late classes.
 - Handing it in before Friday class is 1 late classes.
 - Handing it in before Monday class is 2 late classes.
 - Handing it in before Wednesday class is 3 late classes.
 - You will get a mark of 0 on an assignment if you:
 - Use more than 3 late classes on the assignment.
 - Exceed 4 late classes across all assignments.

Getting Help

- There are many sources of help on the assignments:
 - Weekly tutorials, office hours, Piazza, other students.
- If you do not have access to Matlab:
 - Ask for a CS guest account.
 - Purchase Matlab through the bookstore or online.
 - Use the free alternative Octave.
 - Let me know about any Octave incompatibilities in the assignments.
 - Julia might work, too.
- You can work in groups and use any source, but:
 - Hand in your own homework.
 - Acknowledge all sources, including webpages and other students.

Midterm and Final

- Midterm details:
 - 30% of final grade
 - In class, October 28.
 - Closed book, two-page double-sided 'cheat sheet'.
- No 'tricks' or 'surprises':
 - Given a list of things you need to know how to do.
 - Mostly minor variants on assignment questions.
- If you miss the exam, see me with doctor's note or relevant documentation.
- Final will follow same format:
 - 45% of final grade.
 - Cumulative.

Lecture Style and Lecture Slides

- The course we will cover a lot of topics:
 - Some topics will not be covered in much depth.
 - But we'll go into depth on a few key recurring issues.
 - To keep things sane, I'll give you a list of topics to know for the midterm/final.
 - It can be better to know many methods than learning only a few in detail:
 - I'll explain why when we discuss the "best" machine learning algorithm.
 - Some class time will be devoted to important ideas that you won't be tested on.
- All class material will be available online or on Piazza.
 - I'll try to post topics/readings before each class.
 - After class, I'll post annotated/updated slides.
 - Do not record without permission.
- In early October, we'll do an unnofficial instructor evaluation:
 - Will let me adapt lecture/assignment/tutorial style.

Outline

- 1) Intro to Machine Learning and Data Mining:
- 2) Course Administrivia
- 3) Course Overview

Course Outline

- Next class discusses data exploration, cleaning, and preprocessing.
- After that, the remaining lectures focus on the six topics:
 - 1) Supervised Learning.
 - 2) Unsupervised learning.
 - 3) Linear prediction.
 - 4) Latent-factor models.
 - 5) Deep learning.
 - 6) Density estimation.

Supervised Learning

- Classification:
 - Given an object, assign it to predefined 'classes'.
- Examples:
 - Spam filtering.

Google

COMPOSE

Gmail -

Inbox

Starred

Important Sent Mail

Drafts (1)

Spam (6)

Circles

Body part recognition

in:spam

T.

» MALTESAS

C Delete all s

ion.		
Click here to enable desktop	notifications for Gma	
C More *	1-6 of 6 < >	Q -
ete all spam messages now (me	ssages that have been in Spam more than 30 days will be automatically delete	ed)
atoosa dahbashi	Fw: RECOMMEN PRO. KANGAVARI @	6:03 am
atoosa dahbashi	Fw: Question about PHD @	6:02 am
Group3 Sales	[Sales #TCB-459-11366]: Irregular activity alert	5:42 am
memberservicesNA	ualberta Your credit card will expire soon.	3:19 am
MALTESAS OFFICIAL CONFE	lists [CFP] ARIEET-ADMMET-ISYSM PARALLEL CONFERENCES - O	2:36 am

lists [CFP] MALTESAS SCOPUS Q3 Journal Based Conferences a

10:01 pm

Unsupervised Learning

- Clustering:
 - Find groups of `similar' items in data.
- Examples:
 - Are there subtypes of tumors?
 - Are there high-crime hotspots?
- Outlier detection:
 - Finding data that doesn't belong.
- Association rules:
 - Finding items frequently 'bought together'.

		*	for the second	Becon
Fransaction Date	- Posted Date	Transaction Details	Debit	Credit
Aug. 27, 2015	Aug. 28, 2015	BEAN AROUND THE WORLD VANCOUVER, BC	\$10.95	

Linear Prediction

• Regression:

- Predicting continuous-valued outputs.

J:75

• Working with very high-dimensional data.

Latent-Factor Models

- Principal component analysis and friends:
 - Low-dimensional representations.
 - Decomposing objects into "parts".
 - Visualizing high-dimensional data.
- Collaborative filtering:
 - Predicting user ratings of items.

Customers Who Bought This Item Also Bought

PATTERN RECOGNITION AND MACHINE LEARNING CHRISTOPHER M. BISHOP	har & motions that happened motion to be LEARNING
R Q-	
attern Recognition and	Learning From Data
lachine Learning	> Yaser S. Abu-Mostafa
nformation Science and	***** 88
hristopher Bishop	Hardcover

<

\$60 76 Prim

	and the second second second			
	Print Funds Robert Globbann Annie Friedman			
	The Elements of Statistical Learning multilong interval indexes			
	(lemet (dans))			
	S) terrar			
5	The Elements of Statistical			
fa	Learning: Data Mining,			
	Inference, and Prediction,			
	Trevor Hastie			
	A A A A A			

\$62 82 *Prime*

FROBABUISTIC GRAPHICAL MODELS Determine Determine Probabilistic Graphical Models: Principles and Techniques (Adaptive... Daphne Koller Daphne Koller 28 Hardcover 18 Hardcover

>

dations of Machine ing (Adaptive putation and... ryar Mohri 5

KLAY THOMPSON

Deep Learning

• Neural networks: Brain-inspired ML when you have a lot of data/computation but don't know what is relevant.

Density Estimation

- Density estimation:
 - Modeling the probability of a complex event happening.
 - Modeling dependencies over time.

Photo I took in the UK on the way home from the "Optimization and Big Data" workshop:

