Assignment 6
Question 1.1

Odds ratio

\[
\frac{p(y_i | w^T x_i)}{p(-y_i | w^T x_i)}
\]

Linear model

\[
\log \left(\frac{p(y_i | w^T x_i)}{p(-y_i | w^T x_i)} \right) = w^T x.
\]

Objective function

\[
\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} -\log(p(y_i | w^T x_i)).
\]
Question 1.1

Odds ratio

\[
\frac{p(y_i | w^T x_i)}{p(-y_i | w^T x_i)}
\]

Linear model

\[
\log \left(\frac{p(y_i | w^T x_i)}{p(-y_i | w^T x_i)} \right) = w^T x.
\]

Objective function

\[
\arg\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} -\log(p(y_i | w^T x_i)).
\]

Starting from equation 1

First step

replace \(p(-y_i | w^T x_i) \) with \(p(y_i | w^T x_i) \) using the fact that,

\[
p(y_i | w^T x_i) + p(-y_i | w^T x_i) = 1
\]

Second step

Apply “exp” on both sides to get rid of the log

Third step

Solve for \(p(y_i | w^T x_i) \) and plug it into the objective function
Question 1.2 One-vs-all Logistic Regression

% Classification using one-vs-all least squares

% Compute sizes
[n,d] = size(X);
k = max(y);

W = zeros(d,k); % Each column is a classifier
for c = 1:k
 yc = ones(n,1); % Treat class 'c' as (+1)
 yc(y ~= c) = -1; % Treat other classes as (-1)
 W(:,c) = (X'*X)
 /(X'*yc);
end

model.W = W;
model.predict = @predict;
end

function [yhat] = predict(model,X)
W = model.W;
[~,yhat] = max(X*W,[],2);
end
Question 1.2 One-vs-all Logistic Regression

% Classification using one-vs-all least squares

% Compute sizes
[n,d] = size(X);
k = max(y);

W = zeros(d,k); % Each column is a classifier
for c = 1:k
 yc = ones(n,1); % Treat class 'c' as (+1)
 yc(y ~= c) = -1; % Treat other classes as (-1)
 W(:,c) = (X'*X)\(X'*yc);
end

model.W = W;
model.predict = @predict;
end

function [yhat] = predict(model,X)
 W = model.W;
 [~,yhat] = max(X'*W,[],2);
end

Matrix X
Matrix W
Matrix y

dimensions = ?
dimensions = ?
dimensions = ?

n samples, k classes, p features

use findMin with LogisticLoss instead (see assignment 4 for the LogisticLoss function)
Question 1.2 One-vs-all Logistic Regression

% Classification using one-vs-all least squares
% Compute sizes
[n,d] = size(X);
k = max(y);

W = zeros(d,k); % Each column is a classifier
for c = 1:k
 yc = ones(n,1); % Treat class 'c' as (+1)
 yc(y ~= c) = -1; % Treat other classes as (-1)
 W(:,c) = (X'*X)\(X'*yc);
end

model.W = W;
model.predict = @predict;

function [yhat] = predict(model,X)
W = model.W;
[y~,yhat] = max(X*W,[],2);
end

dimensions = n x p
dimensions = p x k
dimensions = n x k

n samples, k classes, p features

use findMin with LogisticLoss instead
(see assignment 4 for the LogisticLoss function)
Question 1.3 Softmax Loss and derivative

- The softmax probability function is given as,

\[
p(y_i|W, x_i) = \frac{\exp(w_{y_i}^T x_i)}{\sum_{c'=1}^k \exp(w_{c'}^T x_i)}.
\]

- Assume \(y_i \in \{1, 2, 3\} \)

- Convert \(y \) to binary form; i.e.

\[
\bar{y}_i = \begin{cases}
[1, 0, 0] & \text{if } y_i = 1 \\
[0, 1, 0] & \text{if } y_i = 2 \\
[0, 0, 1] & \text{if } y_i = 3
\end{cases}
\]
The softmax probability function is given as,

$$p(y_i|W, x_i) = \frac{\exp(w_{y_i}^T x_i)}{\sum_{c=1}^{k} \exp(w_c^T x_i)}.$$

- Assume $y_i \in \{1, 2, 3\}$
- Convert y to binary form; i.e.

 $$\tilde{y}_i = \begin{cases}
 [1, 0, 0] & \text{if } y_i = 1 \\
 [0, 1, 0] & \text{if } y_i = 2 \\
 [0, 0, 1] & \text{if } y_i = 3
 \end{cases}$$

 where y_{i1}, y_{i2}, y_{i3}

- Therefore,

 $$P(y_i|W, x) = p(\tilde{y}_i|W, x)$$

 $$= \tilde{y}_{i1} \frac{\exp(x_i W_{1}^\top)}{\sum_{c=1}^{k} \exp(x_i W_{c}^\top)} + \tilde{y}_{i2} \frac{\exp(x_i W_{2}^\top)}{\sum_{c=1}^{k} \exp(x_i W_{c}^\top)} + \ldots + \tilde{y}_{iC} \frac{\exp(x_i W_{C}^\top)}{\sum_{c=1}^{k} \exp(x_i W_{c}^\top)}$$

- C is the number of classes
- W^j refers to column j of W
- y_{ic} is the binary predicted target value for class ‘c’ of sample ‘i’
Question 1.3 Softmax Loss and derivative

- The softmax probability function is now formulated as,

\[P(y_i|W, x) = p(\tilde{y}_i|W, x) = \tilde{y}_{i1} \frac{\exp(x_i W^1)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \tilde{y}_{i2} \frac{\exp(x_i W^2)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \ldots + \tilde{y}_{iC} \frac{\exp(x_i W^C)}{\sum_{c=1}^{k} \exp(x_i W^c)} \]
Question 1.3 Softmax Loss and derivative

- The softmax probability function is now formulated as,

\[P(y_i|W, x) = p(\hat{y}_i|W, x) = \frac{\exp(x_i W^1)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \frac{\exp(x_i W^2)}{\sum_{c=1}^{k} \exp(x_i W^c)} + ... + \frac{\exp(x_i W^C)}{\sum_{c=1}^{k} \exp(x_i W^c)} \]

Only one of these terms is non-zero for any training example ‘i’
The softmax probability function is now formulated as,

\[P(y_i|W, x) = p(\tilde{y}_i|W, x) = \tilde{y}_{i1} \frac{\exp(x_i W^1)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \tilde{y}_{i2} \frac{\exp(x_i W^2)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \ldots + \tilde{y}_{ic} \frac{\exp(x_i W^c)}{\sum_{c=1}^{k} \exp(x_i W^c)} \]

The negative logarithm of the probability:

\[
\log(p(\tilde{y}_i|W, x)) = ? \quad \text{(apply log)}
\]

\[-\log(p(\tilde{y}_i|W, x)) = ? \quad \text{(multiply by -1)}\]

The derivative of the negative log probability with respect to \(W_j^c \) can be broken into two cases:

\[
\frac{\partial -\log(p(\tilde{y}_i|W, x))}{\partial W_j^c} = \begin{cases}
? & \text{if } y_i = c; \text{i.e. } \tilde{y}_{ic} = 1 \\
? & \text{if } y_i \neq c; \text{i.e. } \tilde{y}_{ic} = 0
\end{cases}
\]
Question 1.3 Softmax Loss and derivative

- The softmax probability function is now formulated as,

\[
P(y_i|W, x) = p(\tilde{y}_i|W, x) = \tilde{y}_{i1} \frac{\exp(x_i W^1)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \tilde{y}_{i2} \frac{\exp(x_i W^2)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \ldots + \tilde{y}_{iC} \frac{\exp(x_i W^C)}{\sum_{c=1}^{k} \exp(x_i W^c)}
\]

- The negative logarithm of the probability:

\[
\log(p(\tilde{y}_i|W, x)) = ? \quad \text{(apply log)}
\]

\[
- \log(p(\tilde{y}_i|W, x)) = ? \quad \text{(multiply by -1)}
\]

- The derivative of the negative log probability with respect to \(W^c_j \) can be broken into two cases:

\[
\frac{\partial - \log(p(\tilde{y}_i|W, x))}{\partial W^c_j} = \begin{cases}
? & \text{if } y_i = c; \text{ i.e. } \tilde{y}_{ic} = 1 \\
? & \text{if } y_i \neq c; \text{ i.e. } \tilde{y}_{ic} = 0
\end{cases}
\]

\(W^c_j \) is column \(c \) of row \(j \) of \(W \), which corresponds to the coefficient of feature \(j \) of class \(c \).
Question 1.3 Softmax Loss and derivative

- The softmax probability function is now formulated as,

\[P(y_i|W, x) = p(\tilde{y}_i|W, x) = \tilde{y}_{i1} \frac{\exp(x_i W^1)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \tilde{y}_{i2} \frac{\exp(x_i W^2)}{\sum_{c=1}^{k} \exp(x_i W^c)} + \ldots + \tilde{y}_{ic} \frac{\exp(x_i W^c)}{\sum_{c=1}^{k} \exp(x_i W^c)} \]

- The negative logarithm of the probability:

\[\log(p(\tilde{y}_i|W, x)) = ? \quad \text{(apply log)} \]
\[-\log(p(\tilde{y}_i|W, x)) = ? \quad \text{(multiply by -1)} \]

- The derivative of the negative log probability with respect to \(W_j^c \)

\[
\frac{\partial -\log(p(\tilde{y}_i|W, x))}{\partial W_j^c} = \begin{cases}
? & \text{if } y_i = c; \text{ i.e. } \tilde{y}_{ic} = 1 \\
? & \text{if } y_i \neq c; \text{ i.e. } \tilde{y}_{ic} = 0
\end{cases}
\]

Hint: Use the indicator function to distinguish between the two cases
Question 1.4 - Softmax Classifier

```matlab
function [model] = leastSquaresClassifier(X,y)
    % Classification using one-vs-all least squares

    % Compute sizes
    [n,d] = size(X);
    k = max(y);

    % Each column is a classifier
    W = zeros(d,k);
    for c = 1:k
        yc = ones(n,1); % Treat class 'c' as (+1)
        yc(y == c) = -1; % Treat other classes as (-1)
        W(:,c) = (X'*X)
                  \ (X'*yc);
    end

    model.W = W;
    model.predict = @predict;
end
```
Question 1.4 - Softmax Classifier

Use findMin instead with the softmax loss grad function
Question 1.4 - Softmax Classifier

Change the contents of the green box on the left using that of the green boxes on the right.
Question 1.4 - Softmax Classifier

```matlab
function [model] = leastSquaresClassifier(X,y)
% Classification using one-vs-all least squares
[n,d] = size(X);
k = max(y);
W = zeros(d,k); % Each column is a classifier
for c = 1:k
    yc = ones(n,1); % Treat class 'c' as (+1)
    yc(y == c) = -1; % Treat other classes as (-1)
    W(:,c) = (X' * X) \
               (X' * yc);
end
model.W = W;
model.predict = @predict;
end
```

```matlab
W = zeros(d,k); % Each column is a classifier
% findMin expects 1-dimensional parameter vector
% Therefore use W( :) to get W's 1-dimensional form
W( :) = findMin( @yourSoftmaxLossFunction, W( :), .... )

model.W = W;
model.predict = @predict;
end
```

```matlab
function [loss, grad] = yourSoftmaxLossFunction(w, X, y, k)
% reshape w's dimensions to "p x k"
% p is the number of features, k is the number of classes
W = reshape(w, [p k]);

% Compute loss
loss = the softmax loss function you derived for Q1.3

% Compute gradient
grad = the softmax gradient function you derived for Q1.3
% reshape grad's dimensions to "1 x (p * k)"
% i.e. convert the grad matrix to a 1-dimensional vector
grad = reshape(grad, [p*k 1]);
```

Change the contents of the green box on the left using that of the green boxes on the right.
Question 1.5 - Cost of Multinomial Logistic Regression

Time complexity for processing one example = ?

Time complexity for predicting one example = ?
```python
# Training
# Run for T iterations
for t = 1 to T
    # Loop over training examples
    for i = 1 to n
        for k = 1 to K
            softmax_value(i,k) = compute softmax for class k for training example i over the 'd' features
        end for
        for j = 1 to d
            for k = 1 to K
                softmax_gradient(j, k) = compute the gradient for the coefficient of feature j of class k using softmax_value
            end for
        end for
    end for
# Testing
# Loop over test examples
for i = 1 to n_test
    for k = 1 to K
        softmax_value(i,k) = compute softmax for class k for test example i over the 'd' features
    end for
end for
for i = 1 to n_test
    yhat(i) = argmax of softmax_value(i,k) over 'k'
end for
```
Question 2
random walk

```
load simpleGraph.mat % Loads adjacency A and labelList
n = length(A);
p = zeros(n,2);
r = 100;
for i = 2:n
    for j = 1:r
        % Run random walk
        yhat = runRandomWalk(A,labelList,i);
        if yhat == 1
            p(i,1) = p(i,1) + 1;
        elseif yhat == -1
            p(i,2) = p(i,2) + 1;
        end
    end
end
% Output final probabilities
probabilities = p/r
```

<table>
<thead>
<tr>
<th>matrix labelList</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Matrix A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 3 4 5 6</td>
</tr>
<tr>
<td>1 1 0 0 0 1</td>
</tr>
<tr>
<td>1 0 1 0 0 0</td>
</tr>
<tr>
<td>0 1 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 1 0</td>
</tr>
<tr>
<td>1 0 0 0 1 0</td>
</tr>
</tbody>
</table>
Question 2
random walk

% Run random walk
yhat = runRandomWalk(A, labelList, i);
if yhat == 1
 p(i,1) = p(i,1) + 1;
elseif yhat == -1
 p(i,2) = p(i,2) + 1;
end

matrix A
Adjacency matrix

\[
\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 1 & 0 & 1 \\
6 & 1 & 0 & 0 & 0 & 1 & 0 \\
\end{array}
\]

matrix labelList

\[
\begin{array}{c}
3 \\
4 \\
5 \\
\end{array}
\[
\begin{array}{c}
1 \\
1 \\
-1 \\
\end{array}
\]
Question 2
random walk

adjacency matrix

\[
\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
1 & 0 & 1 & 0 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 & 0 \\
4 & 0 & 0 & 0 & 0 & 1 \\
5 & 0 & 0 & 1 & 0 & 1 \\
6 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]
Question 2
random walk

% Run random walk
yhat = runRandomWalk(A,labelList,i);
if yhat == 1
p(i,1) = p(i,1) + 1;
elseif yhat == -1
p(i,2) = p(i,2) + 1;
end

matrix A
Adjacency matrix

matrix labelList

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Question 2
random walk

% Run random walk
yhat = runRandomWalk(A,labelList,i);
if yhat == 1
 p(i,1) = p(i,1) + 1;
elseif yhat == -1
 p(i,2) = p(i,2) + 1;
end

matrix A
Adjacency matrix

matrix labelList

1 2 3 4 5 6
0 1 0 0 0 1
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 1
1 0 0 0 1 0
Question 2
random walk

% Run random walk
yhat = runRandomWalk(A,labelList,i);
if yhat == 1
 p(i,1) = p(i,1) + 1;
elseif yhat == -1
 p(i,2) = p(i,2) + 1;
end
Question 2
random walk

\[yhat = \begin{cases}
-1 & \text{with prob } = \frac{1}{1+2} = \frac{1}{3} \\
1 & \text{with prob } = \frac{1}{3} \\
0 & \text{with prob } = \frac{1}{3}
\end{cases} \]

\[v = 5 \]

\[\text{prob} = \frac{1}{3} \]

matrix A

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

matrix labelList

\[
\begin{array}{c|c}
3 & 1 \\
4 & 1 \\
5 & -1 \\
\end{array}
\]

% Run random walk
yhat = runRandomWalk(A,labelList,i); if yhat == 1
\[p(i,1) = p(i,1) + 1; \]
elseif yhat == -1
\[p(i,2) = p(i,2) + 1; \]
end