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Multi-Dimensional Scaling (MDS)

● Recall: principal component analysis (PCA) projects d-dimensional data points 
to a hyperplane orthogonal to the directions of maximal variance.

Eigenvectors of 
(directional vectors)

Covariance matrix



Multi-Dimensional Scaling (MDS)

● Recall: principal component analysis (PCA) projects d-dimensional data points 
to a hyperplane orthogonal to the directions of maximal variance

● PCA preserves covariance between the data points 



Multi-Dimensional Scaling (MDS)

● MDS projects data points to a space where similar data points are clustered 
together

● MDS preserves distances between points



Multi-Dimensional Scaling (MDS)

● MDS preserves distances between points

Original distances but in d-dimensional space Derives k-dimensional data points 
such that the original distances 
are preserved

Optimizing for Z



Multi-Dimensional Scaling (MDS)

● We want
● where, for example, 

Original distances but in d-dimensional space Derives k-dimensional data points 
such that the original distances 
are preserved



Question 3: exampleMDS exampleMDS.m  file



Question 3: exampleMDS Figure 1 - Displays matrix X

X consists of values 0 and 1 

blue is 0; red is 1

n samples

d features



Question 3: exampleMDS
Figure 2 - Displays the projection of X onto
the first two Principal components 

Z1

Z2



Question 3: exampleMDS
Figure 3 - Displays the datasets in terms
of the two latent features obtained
from MDS 

Z1

Z2



Question 3: exampleMDS
Figure 3 - Displays the datasets in terms
of the two latent features obtained
from MDS 

Z1

Z2



Initializes Z using PCA

Computes the distances between each pair 
of samples

MDS



MDS function value

MDS
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MDS
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MDS



MDS

MDS function value



MDS function value

MDS gradient w.r.t zi and zj



MDS function value

MDS gradient w.r.t zi and zj

Derivative
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MDS gradient w.r.t zi and zj

Derivative

?
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MDS function value

MDS gradient w.r.t zi and zj

Derivative



Question 3.1: visualizeSammon

Sammon’s mapping objective function

MDS objective function
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MDS objective function



Question 3.1: visualizeSammon

Sammon’s mapping objective function

MDS objective function



Question 3.1: visualizeSammon

Sammon’s mapping objective function

MDS objective function

Make changes here

Recall: 
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Sammon’s mapping objective function

MDS objective function

Make changes here

Recall: 

 

?



Question 3.1: visualizeSammon

Sammon’s mapping gradient function

MDS gradient function

?



Question 3.1: visualizeSammon

Sammon’s mapping gradient function

MDS gradient function

?

?
Make changes here



Question 3.2: ISOMAP



Question 3.2: ISOMAP

x1

x2

x3

x2

x1

x3

ISOMAP using 1-nearest neighbor
Multi-dimensional scaling



Question 3.2: ISOMAP

x1

x2
x2

x1

x3

ISOMAP using 1-nearest neighbor
Multi-dimensional scaling

D(x1, x3) 

x3

D(x1, x3) 



Question 3.2: ISOMAP

x1

x2
x2

x1

x3

ISOMAP using 1-nearest neighbor
Multi-dimensional scaling

D(x1, x3) 

x3

D(x1, x3) 



Question 3.2: ISOMAP
● If x is d-dimensional,

○  then ISOMAP with n-nearest neighbor is MDS
○ Otherwise the only difference is in the distance function 



● If x is d-dimensional,
○  then ISOMAP with d-nearest neighbor is MDS
○ Otherwise the only difference is in the distance function

 

ISOMAP: Make changes here



● If x is d-dimensional,
○  then ISOMAP with d-nearest neighbor is MDS
○ Otherwise the only difference is in the distance function

 x2

x1

x3

D(x1, x3) 

ISOMAP: 
1) Find k-nearest neighbors

The ‘k’ points that are 
closest to each data point 
(see KNN)
 



ISOMAP: 
 2) Create n x n zero matrix G 
          (the adjacency graph)

s.t.  

x2

x1

x3

D(x1, x3) 



ISOMAP: 
 2) Create n x n zero matrix G 
          (the adjacency graph)

s.t.  

x2

x1

x3

D(x1, x3) 

3) Use the Djikstra function to get the 
shortest distance between each point i and j



ISOMAP: 
 2) Create n x n zero matrix G 
          (the adjacency graph)

s.t.  

x2

x1

x3

D(x1, x3) 

3) Use the Djikstra function to get the 
shortest distance between each point i and j

The adjacency matrixUpdate the distance matrix



Q4: Visualizing a neural net for 1D regression



Original performance



Original performance

Target performance



Number of hidden neurons

Improve the performance of your neural network

The size of the step to take when updating ‘w’ 

nParams: the total 
number of variables

i: the index of the next sample ‘x’ to be chosen
g: the gradient of that sample with respect to ‘w’

t: the epoch number



Adjust the number of hidden neurons(the more hidden neurons, the more                                                                                                              
powerful your model will be, but couldcause overfitting)

Improve the performance of your neural network

Adjust the step size● Large step size can cause oscillations           in your function value● Small step size can cause slow training



Original performance

Target performance


