

32x32 each vector

or 1024

Eigenvectors (Eigenfaces)

Eigenvectors (Eigenfaces)

Each eigenvector is 32x32

k x dOne
 im

ag
e

Eigenvectors (Eigenfaces)

Each eigenvector is 32x32

k x dOne
 im

ag
e

Change the value of “k” to get
more eigenvectors

Eigenvectors of

k x d

Compressed data
Original data

n x k
n x d

k x d

Reconstructed X

k x dn x kn x d

Observe what changes between these two

uses gradient descent (no constraints)

Initialize without negative values

uses gradient descent (no constraints)

Initialize without negative values

Use gradient descent that enforces non-
negative parameters (findMinNN) instead!

Uses least squares - we don’t want that!

Use gradient descent that enforces non-
negative parameters (findMinNN) instead!

● NMF results in sparse matrices for Z and W since negative values become zero
● However, the compression ratio is poor - the non-negative constraint strongly limits the model power

uses gradient descent (no constraints)

Use L1-regularized gradient descent
(findMinL1) instead!

We can have negative values!

Uses least squares - no constraints!

Use L1-regularized gradient descent
(findMinL1) instead!

● L1 Regularization results in sparse matrices for Z and W
● The compression ratio is better for using L1 than for using NMF

n x d

User id Movie id Movie ratings

n x 1

● No features being represented
● But we can extract latent features that represent

the relationships between users, movies, and
 ratings

n x 1

n x 1

Latent features (represents hidden relationships)
We can extract them through optimization

Bias term, variable for movie ‘m’

Bias term, variable for user ‘u’

n x 1

Latent features (represents hidden relationships)
We can extract them through optimization

Bias term, variable for movie ‘m’

Bias term, variable for user ‘u’

We want this equality to hold!
Use optimization!

Minimize this objective function

● To optimize this function we can use gradient descent, which involves computing the partial
derivatives w.r.t to the unknown variables.

?

?

?

?

Algorithm
1. Initialize random values for
2. Update as follows,

learning rate

○
○

○
○

○
○

○
○

Accumulates gradients for each sample

○
○

Accumulates gradients for each sample

Updates variables

○
○

○

Pick one sample randomly

○
○

○

Pick one sample randomly

Accumulates gradients for each sample

○
○

○

Pick one sample randomly

Accumulates gradients for each sample

Use the gradient for the chosen sample
only!

○
○

○

Pick one sample randomly

Accumulates gradients for each sample

Use the gradient for the chosen sample
only!

Insert the update rules inside the loop
We update every time we choose a random sample

