Mark Schmidt

September 14, 2015

- The notation "g(n) = O(f(n))" means:
 - "for all large n, g(n) less than $c^*f(n)$ for some constant c > 0".
- Examples:

20n + 50 = O(n). $5n^{2} + 34n + 3 = O(n^{2})$ 10 = O(1). $10^{*}log(n) + n = O(n).$ $n^{*}log(n) + 20^{*}n = O(n \log n).$

 $2^{n} + 1000^{*}n^{10} = O(2^{n}).$

- "Runtime of algorithm is O(n)" means that:
 - "In worst case, algorithm requires O(n) operations."
 - Typically, 'n' will measure size of input.
- Why is this important?
 - We can only apply O(2ⁿ) algorithms to tiny datasets.
 - We can apply O(n²) algorithms to medium-sized dataset.
 - We can apply an O(nd) algorithm if one of 'n' or 'd' is medium-sized.
 - We can apply O(n) algorithms to huge datasets.

- Examples of algorithm runtimes:

- Finding the maximum in a list of 'n' numbers: O(n).
 - We do a constant number of operations for each of the 'n' numbers.
- Finding item number 'i' in a list of 'n' numbers: O(1).
 - Just return that number.
- Printing each element times each other element: O(n²):
 - A constant number of operations for each combination.
- Finding an element in a sorted list: O(log n).
- Sorting a list of N numbers: O(n log n).
 - Well-known result, see algorithms class.
- Classifying an example in depth-m decision tree: O(m).
 - You do a constant number of operations at each depth.
 - N.B., no dependence on dimension 'd'.

- Examples of algorithm runtimes depending on two parameters:

- Finding the maximum of an 'n' by 'd' matrix: O(nd)
- Fitting decision stump with 'n' objects and 'd' features:
 - O(n² d) if score costs O(n).
 - O(n d log n) if all scores cost O(n log n).
- Fitting a decision tree of depth 'm':
 - Naïve analysis: 2^{m-1} trees, so O(2^{m-1} n d log(n)).
 - But each object appears once at each depth: O(m n d log n).
- Finding optimal decision tree:
 - There are O(C(n)*n!) tree structures, where C(n) is huge.
 - Then you also have to find the thresholds for each structure.
 - You are never going to do this.