Review of Big-O Notation

- The notation “\(g(n) = O(f(n)) \)” means:
 - “for all large \(n \), \(g(n) \) less than \(c \cdot f(n) \) for some constant \(c > 0 \)”.

- Examples:

 \[20n + 50 = O(n). \]

 \[5n^2 + 34n + 3 = O(n^2) \]

 \[10 = O(1). \]

 \[10 \cdot \log(n) + n = O(n). \]

 \[n \cdot \log(n) + 20n = O(n \log n). \]

 \[2^n + 1000 \cdot n^{10} = O(2^n). \]
Review of Big-O Notation

- “Runtime of algorithm is $O(n)$” means that:
 - “In worst case, algorithm requires $O(n)$ operations.”
 - Typically, ‘n’ will measure size of input.

- Why is this important?
 - We can only apply $O(2^n)$ algorithms to tiny datasets.
 - We can apply $O(n^2)$ algorithms to medium-sized dataset.
 - We can apply an $O(nd)$ algorithm if one of ‘n’ or ‘d’ is medium-sized.
 - We can apply $O(n)$ algorithms to huge datasets.
Review of Big-O Notation

- Examples of algorithm runtimes:
 - Finding the maximum in a list of ‘n’ numbers: O(n).
 - We do a constant number of operations for each of the ‘n’ numbers.
 - Finding item number ‘i’ in a list of ‘n’ numbers: O(1).
 - Just return that number.
 - Printing each element times each other element: O(n^2):
 - A constant number of operations for each combination.
 - Finding an element in a sorted list: O(log n).
 - Sorting a list of N numbers: O(n log n).
 - Well-known result, see algorithms class.
 - Classifying an example in depth-m decision tree: O(m).
 - You do a constant number of operations at each depth.
 - N.B., no dependence on dimension ‘d’.
Review of Big-O Notation

- Examples of algorithm runtimes depending on two parameters:
 - Finding the maximum of an ‘n’ by ‘d’ matrix: $O(nd)$
 - Fitting decision stump with ‘n’ objects and ‘d’ features:
 - $O(n^2 d)$ if score costs $O(n)$.
 - $O(nd \log n)$ if all scores cost $O(n \log n)$.
 - Fitting a decision tree of depth ‘m’:
 - Naïve analysis: 2^{m-1} trees, so $O(2^{m-1} \ n \ d \ \log(n))$.
 - But each object appears once at each depth: $O(m \ n \ d \ \log n)$.
 - Finding optimal decision tree:
 - There are $O(C(n)\cdot n!)$ tree structures, where $C(n)$ is huge.
 - Then you also have to find the thresholds for each structure.
 - You are never going to do this.