
CPSC 340 Assignment 5 (due November 27)

Sparse Latent Factors, Recommender Systems, MDS, Neural Networks

• You can work in groups on the assignments. However, please hand in your own assignments and state
the group members that you worked (as well as other sources of help like online material).

• Place your name and student number on the first page, and submit all answers as a single PDF file to
handin.

• For questions that ask for code, you should include the relevant parts of the code in the appropriate
place in the PDF file.

• Please organize your submission sequentially according to the sections used in this document.

• All Sections (1-5) are equally weighted.

• There may be updates/clarifications to the assignment after the first version is put online. Any
modifications will be marked in red.

1 Sparse Latent-Factor Models

If run the function example faces it will load a set of face images under different lighting conditions. It will
then fit a PCA model (with k = 10) and display 5 figures:

• Random faces taken from the dataset (Figure 1).

• The average face (Figure 2).

• The principal components (Figure 3).

• The original examples xi and the compressed varient zi (Figure 4).

• The same random faces, after reconstructing them from their corresponding zi (Figure 5).

The reconstructions tend to be reasonable given that they compress each 1024-pixel face down to just 10
numbers, although they often lack specific details and are less accurate for faces that do not look like the
average face. In this model, some of the principal components are interpretable (e.g., they reflect different
lighting conditions), but many of them are not. You can change the value of k in this script to see the effect
of including/excluding principal components, if you increase k it will do a better job of reconstructing faces
that do not look like the average face.

1.1 Uniqueness of Principal Components

If you re-run the script, you may get different principal components, even though all that changes between
runs is the order of the training examples. What is the specific difference between the principal components
that are obtained between different runs of the algorithm?

1



1.2 Non-Negative Matrix Factorization

If you replace the function dimRedPCA with dimRedPCA alternate, then instead of using the SVD to com-
pute the principal components it will compute them numerically by using a gradient method that alternates
between updating W and Z. Note that this returns different principal components because it doesn’t enforce
any constraints on W , but (up to numerical accuracies) it will give an equivalent model. You would never
actually use this method to fit a PCA model, but this optimization strategy generalizes to other models
and it shows the learned principal components without the constraints. Below are the results obtained by
dimRedPCA alternate (right) with k = 100, and note that these look different from the usual PCA results
because we aren’t enforcing constraints on W (to make this plot, I initialized with samples from a standard
normal divided by 10−5, but in the a5.zip it uses samples directly. This leads to poor results for PCA, that
look like random noise, but makes a better initialization for other methods):

A disadvantage of PCA is that the principal components tend to be dense (they are all non-zero). One of the
first models to address this is non-negative matrix factorization, where we use the PCA objective but add
non-negative constraints on W . Using dimRedPCA alternate as a template, write a function dimRedNMF
that implements the non-negative matrix factorization (NMF) model. Hand in your code and hand in a plot
of the latent factors (Figure 3) obtained when k = 100.

Hint: you need to make three changes. First, you need to change the initialization so that negative values
of W and Z are set to 0. Second, you need to change the updates of W and Z to use an optimization
method that includes the non-negativity constraint. You can use the function findMinNN minimizes a

2



smooth function subject to non-negative constraints. Finally, you need to update the compress function so
that it finds the non-negative Z minimizing the objective with W fixed.

1.3 Sparse Matrix Factorization

While NMF leads to sparse values of W and Z, disallowing negative values leads to a much worse recon-
struction error. In other words, ZW is a much worse approximation of X when using NMF than when
using PCA. To explicitly trade off between the reconstruction error and the sparsity, we could instead
use L1-regularization of W and Z. Write a function dimRedSPCA (for ‘sparse’ PCA) that uses dimRed-
PCA alternate as a template but applies L1-regularization when estimate W and when estimating Z . Hand
in your code and hand in a plot of the latent factors (Figure 3) obtained with k = 100 and λ =

√
nd.

2 Recommender Systems

If you run the function example movies, it will load a dataset consisting of movie ratings for different users.
The vector y contains the ratings, the first column of X contains the user numbers, and the second column
of X contains the movie numbers. The script runs several simple baseline methods, and reports their
performance on the validation set.

2.1 Latent-Factor Model

We have no features for the user/movies, we must predict the labels based on other labels (collaborative
filtering). One way to improve on these methods is with a latent-factor model. Consider a model of the form

yum = bu + bm + wT
mzu,

where the model has four parameters:

• bu: a bias variable specific to user u.

• bm: a bias variable specific to movie m.

• W : a matrix whose columns wj represent latent features for movie m.

• Z: a matrix whose rows zu represent latent features for user u.

Consider training this based on the squared loss function, which means that our error for a particular user
u and movie m is given by

f(bu, bm, wm, zu) =
1

2
(yum − (bu + bm + wT

mzu))2.

Using the notation rum = (yum − (bu + bm + wT
mzu)), derive the partial derivative of this expression with

respect to (i) bu, (ii) bm, (iii) (wm)i for a particular element i of wm, and (iv) (zu)i for a particular element
i of zu.

2.2 Stochastic Gradient

The function recommendSVD implements the model from the previous question, and trains it using gradient
descent with a constant step size of .0001. Since there are nearly a million ratings, this is quite slow and the
script only runs the method for 10 passes through the data (technically, it’s our Matlab implementation that

3



is slow as this dataset really isn’t that large). In cases like this where we have lots of data but are limited by
time, we can often obtain better performance using stochastic gradient methods. Modify recommendSVD
so it trains using a stochastic gradient method with a constant step-size, doing 10 ‘passes’ of nRatings
stochastic gradient iterations (which takes the same time as 10 gradient descent iterations). Hand in your
modified code, and report the validation error of the method using a larger step-size of .01 and k = 10.

Hint: since we are only changing the optimization method, you don’t need to change anything outside the
‘for iter = 1:maxIter’ loop. However, you will now need to compute the gradient with respect to a single
randomly-chosen training example within the inner ‘for’ loop, and update the parameters based on the
gradient with respect to this single example.

3 Multi-Dimensional Scaling

The function example MDS loads the animals dataset and then shows (i) the raw data, (ii) the data projected
onto the first two principal components, and (iii) the result of applying gradient descent to minimize the
following multi-dimensional scaling (MDS) objective (starting from the PCA solution):

argmin
Z∈Rn×k

1

2

n∑
i=1

n∑
j=i+1

(‖xi − xj‖ − ‖zi − zj‖)2. (1)

As with PCA, it’s possible to minimize this objective with a singular value decomposition, but this code
uses a gradient method since this generalizes to variations on the objective. The results of applying PCA
and MDS are shown below on the left and right.

We see that the crowding effect of PCA makes some non-sensical clusters (e.g., the cluster containing ‘spider
monkey’, ‘polar bear’, and ‘hamster’). MDS is less crowded, but many of the results don’t make sense
(‘persian cat’ and ‘siamise cat’ have ‘mouse’ and ‘chihuahua’ in between them, while ‘wolf’ and ‘grizzly bear’
are close to each other while ‘polar bear’ is on the opposite side of the scatterplot).

3.1 Samman Mapping

Make new function visualizeSammon that implements gradient descent for MDS Sammon mapping objetive,

argmin
Z∈Rn×k

1

2

n∑
i=1

n∑
j=i+1

(‖xi − xj‖ − ‖zi − zj‖)2

‖xi − xj‖
.

Hand in your code and the plot of the result.

4



3.2 ISOMAP

Euclidean distances between very different animals are unlikely to be particularly meaningful. However, since
related animals tend to share similar traits we might expect the animals to live on a low-dimensional manifold.
This suggests that ISOMAP may give a better visualization. Make a new function visualizeISOMAP that
computes the approximate geodesic distance (shortest path through a graph where the edges are only between
nodes that are k-nearest neighbour) between each pair of points, and then fits a standard MDS model (1)
using gradient descent. Hand in your code and the plot of the result when using the 3-nearest neighbours.

Hint: the function dijskstra can be used to compute the shortest (weighted) distance between two points in
a weighted graph. This function requires an n by n matrix giving the weights on each edge (use 0 as the
weight for absent edges). Note that ISOMAP uses an undirected graph, while the k-nearest neighbour graph
might be assymetric. One of the usual heuristics to turn this into a undirected graph is to include an edge
i to j if i is a KNN of j or if j is a KNN of i. (Another possibility is to include an edge only if i and j are
mutually KNNs.)

3.3 ISOMAP with Disconnected Graph

An issue with measuring distances on graphs is that the graph may not be connected. For example, if you
run your ISOMAP code with 2-nearest neighbours then some of the distances are infinite. One heuristic
to address this is to set these infinite distances to the maximum distance in the graph (i.e., the geodesic
distance), which will encourage non-connected points to be far apart. Modify your ISOMAP function to
implement this heuristic. Hand in your code and the plot of the result when using the 2-nearest neighbours.

4 Visualizing a neural net for 1D regression

The file example nnet.m contains a script to train a basic neural net. It is set up with a 1D example, i.e.
where the neural net is used to learn a function mapping R → R. When you run the script, you should be
able to see training progress as the network begins to fit the data. However, in its current form it doesn’t fit
the data very well. Try to improve the performance of the method by changing the structure of the network
(nHidden is a vector giving the number of hidden units in each layer) and the training procedure (e.g.,
change the sequence of step sizes, add momentum, or use findMin from the previous assignment). Hand in
your plot after changing the code to have better performance, and list the changes you made.

5


