CPSC 340 Assignment 2 (due October 2nd)

Frequency-Based Supervised Learning, K-Means Clustering

e You can work in groups on the assignments. However, please hand in your own assignments and state
the group members that you worked (as well as other sources of help like online material).

e Place your name and student number on the first page, and submit all answers as a single PDF file to
handin.

e Please organize your submission sequentially according to the sections used in this document.
e All Sections (1-4) are equally weighted.

e There may be updates/clarifications to the assignment after the first version is put online. Any
modifications will be marked in red.

1 K-Nearest Neighours

Download and expand a2.zip, then run classifier2Ddemo in Matlab. This loads a dataset with 2 features,
fits a decision stump, and then produces a plot similar to the one below:

2

15

0.5

-0.5
-1
-15

= -15 -1 -05 0 05 1 15 2

This is a scatterplot of the feature values across all the training examples. The x-axis is given by the first
feature, the y-axis is given by the second feature, and the symbol (‘+’ or ‘0’) gives the class label. The green
region shows the area of the space that the decision stump labels ‘+’, and the blue region shows the area
of the space that the decision stump labels ‘o’. In this case, you can see the decision stump is using a rule
that tests whether the first feature is larger than a number that is close to 0.5. You can also see that it
incorrectly classifies some of the ‘o’ points where the first feature is less than 0.5. If you change the depth
of the decision tree in the demo and re-run it, you can see how the depth of the decision tree affects the
predictions that the model will make. For example, below are the plots with depths of 3, 5, and 7.



1.1 Prediction Function

In this dataset, nearby points seem to receive the same class label. This indicates that a k—nearest neighbours
classifier might be a better choice than a decision tree. The file knn.m has implemented the training function
for a k—nearest neighbour classifier (which is to just memorize the data). Fill in the predict function in knn.m
so that the model file implements the k-nearest neighbour prediction rule (based on Euclidean distance).
Hand in your predict function as well plots similar to the above for £ = 1, 5, and 10.

Hint: Matlab can be slow at executing operations in ‘for’ loops, but allows extremely-fast hardware-dependent
vector and matrix operations. By taking advantage of SIMD registers and multiple cores, vector and matrix
operations in Matlab will often be several times faster than if you implemented them yourself in a fast
language like C. If you find that calculating the Euclidean distances between all pairs of points takes too
long, the following code will form a matrix containing the squared Euclidean distances between all training
and test points:

[N,D] = size(X);
[T,D] = size(Xtest);
D = X. 2%ones(D,T) + ones(N,D)*(Xtest’)."2 - 2*xX*xXtest’;

Element D(i,j) gives the squared Euclidean distance between training point ¢ and testing point j.

1.2 Choosing the Number of Neighbours

Recall the two parts of the fundamental trade-off in machine learning:
1. How small you can make the training error?
2. How well does the training error approximates the test error?

In a k—nearest neighbour classifier, how does the parameter k affect each of the two parts of the trade-off?
What is one way that we could choose k in practice?

1.3 Runtime

If you have pre-computed the distances to all N training examples, the cost of classifying a new example by
sorting these distances is bounded by O(N log N). Show how we can classify a new example more quickly,
even for large values of k, if we use an O(N)-time selection algorithm (a selection algorithm is an algorithm
that returns the kth largest element in an unsorted list).



2 Naive Bayes

If you run the function example_trainValidate it will perform the following:

1. Load the newsgroups data from Assignment 1, except we have now renamed Xtest to Xvalidate and
ytest to yvalidate since we have already looked at them in the previous assignment.

2. Train a decision tree of depth 20, and report its validation error.

3. Call the knn function and report its validation error. Once you have finshined Question 1.1, it should
report a lower validation error than the decision tree.

4. Call the naiveBayes function and report its validation error. Note that the current naive Bayes function
is extra-naive, because it assumes that p(z;;|y;) = 1/2 for all features j.

2.1 Estimating the Conditional Probabilities

The predict function of the naive Bayes classifier is already implemented, but the calculation of the variable
p-zy is incorrect (right now, it just sets all values to 1/2). Modify this function so that p_zy computes the
conditional probability of these values based on the frequencies in the data set. Hand in your code and
report the validation error that you obtain.

2.2 Interpreting the Naive Bayes Model

The predictions made by naive Bayes are bit harder to explain than the explicit rules used by decision trees,
since they simultaneously combine information from the all the features. However, we can get an idea of
which features matter the most by looking at the conditional probabilities. For each of the four classes ‘c’,
report the three words that have the highest value of p(z;; = 1|y; = ¢).

2.3 Runtime of Naive Bayes for Binary Data

If you have D features for N objects, you can implement the training phase of a naive Bayes classifier in
O(ND) since the dominant cost is looking at each element X (,5) one time. (You do not have to actually
implement it in this way for Question 3.1, but you should think about how this could be done). What is the
cost of classifying T test examples with the model?

2.4 Explaining the Performance of Different Methods

The naive Bayes model is much less powerful than a k-nearest neighbour classifier (or even a decision tree)
because it can only model very simple distributions, yet on this dataset it actually gives lower error. What
theorem from class could explain why a less-flexible model worked better on a particular dataset?

3 Random Forests

If you run the function ezample_randomForest it will perform the followinng:
1. Load Fisher’s famous iris flower dataset, split into a training and validation set.

2. Fit a depth-4 decision tree, and report the validation error.



3. Fit a ‘random forest’ classifier using depth-4 decision trees, and report the validation error.

You will notice that the validation errors of the two models are the same, because the ‘random’ forest
classifier doesn’t yet incorporate any randomization.

3.1 Boostrap Aggregation

Currently, the randomForest.m functions trains each tree on the entire N training examples. Modify this
function so that each tree is trained on a bootstrap sample of the training data (/N samples chosen with
replacement). Hand in your code, and report the validation error with this modification.

3.2 Random Feature Selection

Using bootstrap samples introduces a small amount of variation among the trees, but they are still very
similar to each other. In order to introduce a larger variation among the trees, modify the randomStump.m
function so that it splits using a random feature instead of searching over all features. Hand in your code,
and report the validation error with this modification.

3.3 Choosing the Number of Random Features/Trees

You can do either problem 1 or problem 2 below:

1. Consider the problem of learning a decision tree of fixed depth, where at each depth you consider a
random subset of the features as possible candidates for the split variable. Let’s use k to denote the
number of random features that each decision stump considers (so in the previous question, we had
k =1). How does the value k affect the two parts of the fundamental trade-off in machine learning?

2. Consider the problem of learning a random forest, and let’s use k£ to denote the number of random
trees that we learn. How does the value k affect the two parts of the fundamental trade-off in machine
learning?

4 K-Means Clustering

If you run the function example_Kmeans, it will load a dataset with two features and a very obvious clustering
structure. It will then apply the k-means algorithm with a random initialization. The result of applying the
algorithm will thus depend on the randomization, but a typical run might look like this:



K-Means clustering

251
L et P s
Zy T . RS 11 A0
“iak & e, *
15 F R A
101
5l
0r <
o oy
10+
_15 1 1 1 1 1 1 1 ]
-20 -15 -10 -5 1] 5 10 15 20

But the ‘correct’ clustering (that was used to make the data) is this:

K-Means clustering
251

¢ Tnda o AR

i . . :

(Note that the colours are arbitrary.)

4.1 K-Means+-+

If you run the demo several times, you will see that k-means occasionally discovers the four clusters in the
data. However, on many runs it does not. To try to improve its performance on a typical run, modify
the clusterKmeans.m file so that it uses the k-means++ initialization. Hand in your modified code. Report
whether k-means+-+ increase the chances of finding the four true clusters, and comment on whether k-means
runs faster with the k-means-++ initialization.

Hint: you can use the function sampleDiscrete to sample from a discrete probability distribution. For
example, if you call sampleDiscrete([0.2 0.8 0.5]), then 50% of the time it will return 3, 30% of the time it
will return 2, and 20% of the time it will return 1.



