CPSC 340: Machine Learning and Data Mining

K-Means Clustering

Fall 2015
Admin

• Assignment 1 solutions posted after class.
 – Tutorials for Assignment 2 on Monday.
Random Forests

• Random forests are one of the best ‘out of the box’ classifiers.

• Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.
Random Forests

• Random forests are one of the best ‘out of the box’ classifiers.
• Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.
Classifying Cancer Types

• “I collected gene expression data for 1000 different types of cancer cells, can you tell me the different classes of cancer?”

• We are not given the class labels y, but want meaningful labels.
• An example of unsupervised learning.

Unsupervised Learning

- **Supervised learning:**
 - We have features x_i and class labels y_i.
 - Write a program that produces y_i from x_i.

- **Unsupervised learning:**
 - We only have x_i values, but no explicit target labels.
 - You want to do ‘something’ with them.

- **Some unsupervised learning tasks:**
 - Outlier detection: Is this a ‘normal’ x_i?
 - Data visualization: What does the high-dimensional X look like?
 - Association rules: Which x_{ij} occur together?
 - Latent-factors: What ‘parts’ are the x_i made from?
 - Ranking: Which are the most important x_i?
 - Clustering: What types of x_i are there?
Clustering

• **Clustering:**
 – Input: set of objects described by features x_i.
 – Output: an assignment of objects to ‘groups’.

• Unlike classification, we are not given the ‘groups’.
 – Algorithm must discover groups.

• Example of groups we might discover in e-mail spam:
 – ‘Lucky winner’ group.
 – ‘Weight loss’ group.
 – ‘Nigerian prince’ group.
Clustering Example
Clustering Example
Data Clustering

• General goal of clustering algorithms:
 – Objects in the same group should be ‘similar’.
 – Objects in different groups should be ‘different’.

• But the ‘best’ clustering is hard to define:
 – We don’t have a test error.
 – Generally, there is no ‘best’ method in unsupervised learning.
 – Means there are lots of methods: we’ll focus on important/representative ones.

• Why cluster?
 – You could want to know what the groups are.
 – You could want a ‘prototype’ example for each group.
 – You could want to find the group for a new example x.
 – You could want to find objects related to a new example x.
Clustering of Epstein-Barr Virus
Other Clustering Applications

• NASA: what types of stars are there?
• Biology: are there sub-species?
• Documents: what kinds of documents are on my HD?
• Commercial: what kinds of customers do I have?
• Clothing: what sizes of clothing should I make?
K-Means

• Most popular clustering method is k-means.
• Input:
 – The number of clusters ‘k’.
 – Initial guesses of the ‘mean’ of each cluster.
• Algorithm:
 – Assign each x_i to its closest mean.
 – Update the means based on the assignment.
 – Repeat until convergence.
K-Means Example

Start with ‘k’ initial ‘means’
(usually, random data points)
K-Means Example

Assign each object to the closest mean.
K-Means Example

Update the mean of each group.
K-Means Example

Assign each object to the closest mean.
K-Means Example

Update the mean of each group.
K-Means Example

Assign each object to the closest mean.
Update the mean of each group.
K-Means Example

Assign each object to the closest mean.
K-Means Example

Update the mean of each group.

Stop if no objects change groups.
Cost of K-means

• The bottleneck is calculating distance from x_i to mean c:

$$
\| x_i - \mu_c \| = \sqrt{\sum_{j=1}^{d} (x_{ij} - \mu_{cj})^2}
$$

• Each time we do this costs $O(d)$ to go through all features.

• For each of the ‘n’ objects, we compute the distance to ‘k’ clusters.

• **Total cost of assigning objects to clusters is $O(ndk)$**.
 – Fast if k is not too large.

• Updating means is cheaper: $O(nd)$.
K-Means Issues

• Guaranteed to converge when using Euclidean distance.
• Clustering a new object:
 – Assign to the nearest mean.
• Assumes you know ‘k’.
• Each object is assigned to one (and only one) cluster:
 – No possibility to leave objects unassigned.
• It may converge to sub-optimal local solution...
K-Means Clustering with Different Initialization
K-Means Initialization

• Classic approach to dealing with sensitivity to initialization:
 – Try several different random starting points, choose the ‘best’.

• Newer approach: **K-Means++**
 – Choose a random data point as the first mean.
 – Compute the distance of every point to the closest mean.
 – Sample the next proportional to these distances squared.

• K-Means++ tends to give means that are far apart.
 – Can prove it yields an approximation to optimal K-means clustering.
Vector Quantization

• K-means originally comes from signal processing.
• Designed for vector quantization:
 – Replace ‘vectors’ (objects) with a set of ‘prototypes’ (means).

• Example: Facebook places:
Vector Quantization: Image Colors

- Usual RGB representation of a pixel’s color: three 8-bit numbers.
 - For example, [241 13 50] = □.
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)
K-Means Quantized: (6-bits/pixel)
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, [241 13 50] = 🟠.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel) K-Means Quantized: (3-bits/pixel)
Vector Quantization: Image Colors

• Usual RGB representation of a pixel’s color: three 8-bit numbers.
 – For example, [241 13 50] = □.
 – Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel) K-Means Quantized: (2-bits/pixel)
Vector Quantization: Image Colors

- Usual RGB representation of a pixel’s color: three 8-bit numbers.
 - For example, \([241, 13, 50]\) = 🟢.
 - Can apply k-means to find set of prototype colours.
What is K-Means Doing?

• We can interpret K-Means as trying to minimize an objective:
 – Sum of distances from each object x_i to its center:

$$f(\mu_1, \mu_2, ..., \mu_k, c(1), c(2), ..., c(n)) = \sum_{i=1}^{d} \| x_i - \mu_{c(i)} \|$$

• We alternate between:
 – Updating cluster assignments $c(i)$.
 – Updating means μ_c.

• Convergence follows because
 – Each step does not increase the objective.
 – There are a finite number of assignments to k clusters.
K-Medoids

- With other distances, k-means may not converge.
- However, changing objective function gives convergent algorithms.
- E.g., we can use the L1-norm: \[\| x_i - m_c \|_1 = \sum_{j=1}^{d} | x_{ij} - m_{cj} | \]
- A ‘k-medoids’ algorithm based on the L1-norm optimizes:
 \[f(m_1, m_2, \ldots, m_K; c(1), c(2), \ldots, c(n)) = \sum_{i=1}^{d} \| x_i - m_{c(i)} \|_1 \]
 - Cluster assignment based on the L1-norm.
 - Update ‘medoids’ by setting them to the median.
- This approach is more robust to outliers.
Summary

• **Unsupervised learning**: fitting data without explicit labels.
• **Clustering**: finding ‘groups’ of related objects.
• **K-means**: simple iterative clustering strategy.
• **Vector quantization**: replacing measurements with ‘prototypes’.
• **K-medoids**: generalization to other distance functions.

• Next time:
 – Non-parametric clustering.