CPSC 340: Machine Learning and Data Mining

K-Means Clustering Fall 2015

Admin

- Assignment 1 solutions posted after class.
 - Tutorials for Assignment 2 on Monday.

Random Forests

- Random forests are one of the best 'out of the box' classifiers.
- Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.

Random Forests

- Random forests are one of the best 'out of the box' classifiers.
- Fit deep decision trees to random bootstrap samples of data, base splits on random subsets of the features, and classify using mode.

Classifying Cancer Types

 "I collected gene expression data for 1000 different types of cancer cells, can you tell me the different classes of cancer?"

- We are not given the class labels y, but want meaningful labels.
- An example of unsupervised learning.

Unsupervised Learning

- Supervised learning:
 - We have features x_i and class labels y_i .
 - Write a program that produces y_i from x_i .
- Unsupervised learning:
 - We only have x_i values, but no explicit target labels.
 - You want to do 'something' with them.
- Some unsupervised learning tasks:
 - Outlier detection: Is this a 'normal' x_i ?
 - Data visualization: What does the high-dimensional X look like?
 - Association rules: Which x_{ij} occur together?
 - Latent-factors: What 'parts' are the x_i made from?
 - Ranking: Which are the most important x_i ?
 - Clustering: What types of x_i are there?

Clustering

- Clustering:
 - Input: set of objects described by features x_i .
 - Output: an assignment of objects to 'groups'.
- Unlike classification, we are not given the 'groups'.
 - Algorithm must discover groups.
- Example of groups we might discover in e-mail spam:
 - 'Lucky winner' group.
 - 'Weight loss' group.
 - 'Nigerian prince' group.

Clustering Example

Clustering Example

Data Clustering

- General goal of clustering algorithms:
 - Objects in the same group should be 'similar'.
 - Objects in different groups should be 'different'.
- But the 'best' clustering is hard to define:
 - We don't have a test error.
 - Generally, there is no 'best' method in unsupervised learning.
 - Means there are lots of methods: we'll focus on important/representative ones.
- Why cluster?
 - You could want to know what the groups are.
 - You could want a 'prototype' example for each group.
 - You could want to find the group for a new example x.
 - You could want to find objects related to a new example x.

Clustering of Epstein-Barr Virus

Other Clustering Applications

- NASA: what types of stars are there?
- Biology: are there sub-species?
- Documents: what kinds of documents are on my HD?
- Commercial: what kinds of customers do I have?
- Clothing: what sizes of clothing should I make?

http://www.eecs.wsu.edu/~cook/dm/lectures/l9/index.html
http://www.biology-online.org/articles/canine_genomics_genetics_ru

ttp://wannabite.com/wp-content/uploads/2014/10/ragu-pasta-sauce-printable-coupon.jp

K-Means

- Most popular clustering method is k-means.
- Input:
 - The number of clusters 'k'.
 - Initial guesses of the 'mean' of each cluster.
- Algorithm:
 - Assign each x_i to its closest mean.
 - Update the means based on the assignment.
 - Repeat until convergence.

Cost of K-means

The bottleneck is calculating distance from x_i to mean c:

$$\|\chi_i - M_c\| = \sqrt{\frac{d}{2}} (\chi_{ij} - M_{cj})^2$$

- Each time we do this costs O(d) to go through all features.
- For each of the 'n' objects, we compute the distance to 'k' clusters.
- Total cost of assigning objects to clusters is O(ndk).
 - Fast if k is not too large.
- Updating means is cheaper: O(nd).

K-Means Issues

- Guaranteed to converge when using Euclidean distance.
- Clustering a new object:
 - Assign to the nearest mean.
- Assumes you know 'k'.
- Each object is assigned to one (and only one) cluster:
 - No possibility to leave objects unassigned.
- It may converge to sub-optimal local solution...

K-Means Clustering with Different Initialization

K-Means Initialization

- Classic approach to dealing with sensitivity to initialization:
 - Try several different random starting points, choose the 'best'.
- Newer approach: K-Means++
 - Choose a random data point as the first mean.
 - Compute the distance of every point to the closets mean.
 - Sample the next proportional to these distances squared.
- K-Means++ tends to give means that are far apart.
 - Can prove it yields an approximation to optimal K-means clustering.

Vector Quantization

- K-means originally comes from signal processing.
- Designed for vector quantization:
 - Replace 'vectors' (objects) with a set of 'prototypes' (means).
- Example: Facebook places:

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

K-Means Quantized: (6-bits/pixel)

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

K-Means Quantized: (3-bits/pixel)

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

K-Means Quantized: (2-bits/pixel)

- Usual RGB representation of a pixel's color: three 8-bit numbers.
 - For example, [241 13 50] = \blacksquare .
 - Can apply k-means to find set of prototype colours.

Original: (24-bits/pixel)

K-Means Quantized: (1-bits/pixel)

What is K-Means Doing?

- We can interpret K-Means as trying to minimize an objective:
 - Sum of distances from each object xi to its center:

$$f(u_1)u_2,...,u_{k},c(1),c(2),...,c(n)) = \sum_{i=1}^{d} || x_i - Mc(i)||$$

- We alternate between:
 - Updating cluster assignments c(i).
 - Updating means μ_c .
- Convergence follows because
 - Each step does not increase the objective.
 - There are a finite number of assignments to k clusters.

K-Medoids

- With other distances, k-means may not converge.
- However, changing objective function gives convergent algorithms.

• E.g., we can use the L1-norm:
$$||x_{j} - m_{c}||_{x_{j}} = \frac{d}{dx_{j}} ||x_{j} - m_{cj}||_{x_{j}}$$

A 'k-medoids' algorithm based on the L1-norm optimizes:

$$f(u_1, u_2, ..., u_{k}, c(1), c(2), ..., c(n)) = \int_{i=1}^{d} || x_i - Mc(i) ||$$

- Cluster assignment based on the L1-norm.
- Update 'medoids' by setting them to the median.
- This approach is more robust to outliers.

Summary

- Unsupervised learning: fitting data without explicit labels.
- Clustering: finding 'groups' of related objects.
- K-means: simple iterative clustering strategy.
- Vector quantization: replacing measurements with 'prototypes'.
- K-medoids: generalization to other distance functions.

- Next time:
 - Non-parametric clustering.