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Admin

• Assignment 6 due Friday.

– Error in Q1.1 fixed: should be able to get to logistic loss.

• We will have office hours as usual next week.

• Final exam details:

– December 15: 8:30-11 (WESB 100).

– 4 pages of cheat sheet allowed.

– 9 questions.

– Practice questions and list of topics posted.



Last Time: Markov Chains

• Markov chains are common way to define probability of sequence.

• We discussed several tasks and how to solve them:
1. Sampling: generate sequence following probability distribution.

• Generate x0 from p(x0), then generate xt conditioned on xt-1 using p(xt | xt-1).

2. Learning: estimate parameters given examples.
• Count number of times we go from xt-1 to xt in data, divided by number of times in xt-1.

3. Inference: computing probability of being in state ‘s’ at time ‘t’.
• Matrix multiplication of p(xt-1) and p(xt | xt-1) up to time ‘t’.

4. Stationary distribution is steady-state after running for a long time.
• Unique if probabilities positives, and obtained by normalized first “row” eigenvector.

5. Decoding: compute most likely sequence of states.
• Dynamic programming (“Viterbi decoding”).



Sequence of Most Probable ≠ Most Probable Sequence

• 2 roommates alternate cleaning duties for 4 days:
– Roommate A cleans on days 0 and 2, roommate B cleans on days 1 and 3.

– Roommate A prefers ‘clean’, but gets discourage if roommate B didn’t clean.

– Roommate B doesn’t mind ‘mess’, especially if it’s already messy.

• Assume the following probabilities:
– p(x0 = ‘clean’) = 0.65.

– p(x1 = ‘clean’ | x0 = ‘clean’) = 0.20.

– p(x1 = ‘clean’ | x0 = ‘mess’) = 0.05.

– p(x2 = ‘clean’ | x1 = ‘clean’) = 0.80.

– p(x2 = ‘clean’ | x1 = ‘mess’) = 0.50.

– p(x3 = ‘clean’ | x2 = ‘clean’) = 0.20.

– p(x3 = ‘clean’ | x2 = ‘mess’) = 0.05.



Sequence of Most Probable ≠ Most Probable Sequence

• Inference gives us probability of each state at each time.

• Most likely at each time: ‘0:clean’, ‘1:mess’, ‘2:clean’, ‘3:mess’.



Sequence of Most Probable ≠ Most Probable Sequence

• Probability of sequence of most probable:

• Ignores probability of states co-occurring due to dependence.

– Sequence of most probable states only happens 21% of the time.



Sequence of Most Probable ≠ Most Probable Sequence

• Decoding gives most probable sequence:
– ‘0:clean’, ‘1:mess’, ‘2:mess’, ‘3:mess’.

– Happens 29% of the time.

• Why the switch on day 2?
– Many possible sequences of states.

– Probability over all sequences that have ‘2:clean’ higher than ‘2:mess’.

– But no individual sequence has higher probability than decoding.



Should we use decoding or inference?

• Suppose someone asks us to predict a set of variables (x1,x2,x3,x4).

• Previously, we’ve only worried about prediction one variable (y):
– No distinction between decoding/inference.

• Should you use decoding or inference?
– If payoff is based on number of variables right: use inference.

– If you get paid for getting the whole sequence right: use decoding.
http://collegebasketball.nbcsports.com/2015/03/15/2015-ncaa-tournament-printable-bracket/



Generalizations of Basic Markov Chain Model

• Standard Markov chain model is very limited.

• A variety of interesting extensions exist:
– Multi-variable Markov chains:

• xt is vector (‘rain’,’hot’) instead of scalar, cost is exponential in number of ‘variables’.

– Higher-order Markov chains:
• xt depends on xt-1 and xt-2, cost is exponential in length of ‘history’.

– Hidden Markov models:
• We observe a measurement based on xt but don’t observe xt directly.

• E.g., tracking a player/plane/missile based on video/GPS/radar.

– Conditional Markov models:
• Supervised learning where we have Markov dependency in labels.

– Belief networks.



Belief Networks

• We have a dataset with binary features:

• We want to model p(xi), probability of seeing a binary vector.
– Why? Outlier detection, filling in missing values, scientific discovery, etc. 

• We have seen two ways to do this:
– Independent distribution (used by naïve Bayes):

– Markov chains:

– Today: generalization called belief networks.



Belief Networks

• Weird notation alert: we’ll ignore ‘i’:

– ‘x’ will be what we would normally call ‘xi’.

– ‘xj’ will be what we would normally call ‘Xij’.

• General representation of p(x) using product rule:

• Problem: this has too many parameters: last term has 2d values.]

• Solution 1: ‘parsimonious’ parameterization:

• Solution 2: conditional independence.



Belief Networks

• Recall definition of conditional independence:

• Naïve Bayes:

• Markov chain:

• Belief networks:



Belief Networks

• Belief networks assume joint distribution factorized as:

• Based on factorization we define a graph:
– One vertex for each variable xj.

– We have an edge if ‘i’ is a parent of ‘j’.

• Importance of graph:
– Visual representation of assumptions.

– Graph structure lets us test other conditional independencies.

– Computational implications of graph structure (later in lecture).

• Also known as “Bayesian networks”, “Causal networks”, or “Directed 
acyclic graphical (DAG) models”. 























Cool Picture Motivation for Deep Learning

• First layer of zi trained on 10 by 10 image patches:

• Visualization of second and third layers trained on specific objects:

http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pdf



Summary

• Belief networks represent conditional independence using graphs.

• Graphical representation of models like naïve Bayes and Markov.

• D-separation tests any conditional independence from graph.

• Sampling/inference and learning are easy.

• Decoding/conditional-inference and learning with hidden hard.

– But easy if graph structure is ‘nice’.

• Next time:

– Review of topics we’ve covered, overview of topics we didn’t.


