CPSC 340: Machine Learning and Data Mining

Markov Chains Fall 2015

Admin

- Assignment 6 due Friday.
- Final exam details:
 - December 15: 8:30-11 (WESB 100).
 - 4 pages of cheat sheet allowed.
 - 9 questions.
 - Practice questions and list of topics posted.

Last Time: Sequence Alignment

- We discussed finding similar sequences or aligning sequence parts.
 - Can find longest common substrings in linear time using suffix trees.
 - Using dynamic programming, we can compute 'edit' distance:
 - How many insertions/deletions/replacements to transform A into B?
 - Local alignment:
 - Find local regions with small edit distance.
 - BLAST:
 - Fast substring search to prune search for local alignments.
 - Multiple sequence alignment:
 - Hierarchical clustering helps align multiple sequences.

ƁANANA§

NA\$

NA 9

2

Last Time: Dynamic Programming

- Dynamic programming:
 - Solves seemingly exponential-sized problems in polynomial-time.
- 3 ingredients:
 - 1. Given results of recursive calls, can solve problem efficiently.
 - 2. Limited number of possible arguments recursive calls.
 - 3. Memorize the results of recursive calls.
- Standard ways to implement dynamic programming:
 - 1. Start from final result, use recursion but 'check' if result is in global table.
 - 2. Bottom-up: start filling out entries in the table in order.

Example: Matrix Chain Multiplication

(r) hox

0000 × 1000

10000

10000 x

 $|n \times |$

(0000×1

() x

Cheap

- Supposed we want to multiply matrices of different sizes:
 ABCDE.
 A (B((DE)
- Cost depends on order of multiplication:

- A(B(C(DE))) vs. A((BC)(DE)).

• What is the optimal order?

- There are an exponential number of possible orders.
- With 'n' matrices, we can solve this in $O(n^3)$ using dynamic programming.

 $C: |0 \times |$

0000

X

10000 × 10

x ()

0000

Example: Matrix Chain Multiplication

- Define the solution recursively:
 - Cost(ABCDE) is minimum of:
 - Cost(ABCD) plus Cost(E) plus cost of combining result.
 - Cost(ABC) plus Cost(ØDE) plus cost of combining result.
 - Cost(AB) plus Cost(CDE) plus cost of combining result.
 - Cost(A) plus Cost(BCDE) plus cost of combining result.
 - We could solve problem in O(n) given recursive calls.
- There are only O(n²) possible recursive calls:
 - Ordering restricts possible recursions:
 - Cost(A), Cost(B), Cost(C), Cost(D), Cost(E),
 - Cost(AB), Cost(BC), Cost(CD), Cost(DE), Cost(ABC), Cost(BCD), Cost(CDE),
 - Cost(ABCD), Cost(BCDE).
- If you load results instead of re-computing, total cost is O(n³).

 $Cost(X_1, X_2, X_3, ...)$ if (already computed) load result return Else E do the work ...

Markov Chain Example

• Markov chains have a set of 'times' and possible 'states':

Our 'states' are 'rain' and 'not rain', at each time you have to We define probabilities over initial state and transition between be in one of these $p(x_0 = \text{'rain'})$ is probability of it raining at time 0. $p(x_1 = \text{'rain'}|x_{t-1} = \text{'nst rain'})$ is probability of it raining at time 't' if it was not raining at time t-1.

Markov Chains

- Modeling the probability of a sequence x₀, x₁, x₂, x₃,...
 - At 'time' 0, we have a probability $p(x_0 = s)$ that ' x_0 ' will be in each 'state' 's'.
 - At 'time' t, we have probability $p_t(x_t = s_t | x_{t-1} = s_{t-1}, x_{t-2} = s_{t-2}, ..., x_0 = s_0)$:
 - Probability that ' x_t ' is in state ' s_t ', given what has happened so far.
- Based on product rule: $\rho(x_{t}, x_{t-1}, x_{0}) = \rho(x_{t} | x_{t-1}, x_{t-2}, y_{0}) \rho(x_{t-1}, x_{t-2}, y_{0})$ $= \prod_{i=1}^{t} \left[\rho(x_{i} | x_{i-1}, x_{i-2}, y_{0}) \rho(x_{0})\right]$ • Markov chains assume the Markov property:
 - Conditional independence assumption: $x_t \perp x_{t-2}, x_{t-1}, \dots, x_0 \mid x_{t-1}$:
 - $p_t(x_t = s_t | x_{t-1} = s_{t-1}, x_{t-2} = s_{t-2}, ..., x_0 = s_0) = p_t(x_t = s_t | x_{t-1} = s_{t-1}).$
 - 'Memorylessness': $\int_{0}^{\infty} \rho(x_{t_{j}}x_{t-1}) = \rho(x_{0}) = \rho(x_{0}) \prod_{i=1}^{1} \rho(x_{i} | x_{i-i})$
 - Probability only depends on where you are now, not where you were before.

Markov Chain Examples

- We have already seen several examples:
 - PageRank, spectral clustering, graph-based SSL (A6Q2).
- PageRank example:
 - Each 'state' is a webpage on the internet.
 - We start on a random page: $p(x_0 = s) = 1/|S|$.
 - E.g., <u>www.youtube.com</u> (not really random).
 - At each time 't', we click on a random link:

 $p(x_t = s_2 | x_{t-1} = s_1) = \frac{1}{d_s} I[s_1 \text{ to } s_2 \text{ link exists}]$

- If allow moving to new random page ('damping'):
 - Markov property is still satisfied.
- If time 't' depends on time 't-5':
 - Markov property is not satisfied (can't look at browser history).

Markov Chain Examples

In our examples, probabilities were homogeneous:

$$p(x_t = s_2 | x_{t-1} = s) = p(x_1 = s_2 | x_{t-1} = s_1)$$

t special case.
$$p(x_t = s_2 | x_{t-1} = s_1)$$

- Important special case.
- In practice, we often allow time-dependent probabilities.
- Incredible number of other applications:
 - Bioinformatics, physics/chemistry, speech recognition, predator-prey models, language tagging/generation, computing integrals, economic models, tracking missiles/players, modeling music.

https://en.wikipedia.org/wiki/Markov_chain

ittp://www.cs.uml.edu/ecg/index.php/Alfall11/MarkovMelodyGenerator

http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter10.html

nttps://plus.maths.org/content/understanding-unseen

Melody Generator

Generates a random melody using Markov Chains built from states and transitions extracted from an analysis of existing songs.

Markov Chain Tasks

- We are going to focus on discrete time and states.
- Common tasks we want to do with Markov chains:
 - **1.** Sampling: given model, simulate from $p(x_t, x_{t-1}, ..., x_0)$.
 - 2. Learning: estimating $p(x_t = s_1 | x_t = s_2)$ to make model.
 - 3. Inference: given model, compute $p_t(x_t = s)$.
 - 4. Stationary distribution: $p_{\infty}(x_{\infty} = s)$.
 - 5. Decoding: $\max_{y_{1},y_{2},...,y_{t}} p(x_{t}, x_{t-1}, x_{t-2}, ..., x_{0})$.
 - 6. Conditional inference: $p(x_t = s_1 | x_{t-1} = s_2, x_{t+10} = s_3)$.

Sampling from Markov Chains

- Sampling from a Markov chain:
 - Generate a sequence $x_0, x_1, ..., x_t$ following the joint distribution: $\rho(x_t, y_{t-1}, ..., x_0) = \rho(x_0) \underbrace{\mathcal{T}}_{i=1}^t \rho(x_i | x_{i-1})$
 - E.g., can we simulate a 'random web surfer'?
- Easy for discrete time/states, a random walk model:
 - Generate x_0 according to $p(x_0)$.
 - For i = 1,2,...,t
 - Given x_{i-1} , generate x_i according to $p(x_i | x_{i-1})$.
- Why this works: Probability space $x_1 = x_1 = hot rain' f = x_0 = hot rain' f = ho$
- Random walk

Learning Parameters of Markov Chain

- Learning in Markov chains:
 - Given sample(s) of Markov chain, estimate what probabilities should be.
- Maximum likelihood estimates:
 - $p(x_0 = s) = N(x_0 = s)/N$. In the set of samples we have. Symmetry of times we start with $x_0 = s$.
 - Inhomogeneous case:

•
$$p_t(x_t = s_2 | x_{t-1} = s_1) = N(x_{t-1} = s_1, x_t = s_2)/N(x_{t-1} = s_1)$$
.
• $p_t(x_t = s_2 | x_{t-1} = s_1) = N(x_{t-1} = s_1, x_t = s_2)/N(x_{t-1} = s_1)$.

- number of samples where we went from sito so at time (t-1)
- Homogeneous case: • $p(x_t = s_2 | x_{t-1} = s_1) = N(x_{i-1} = s_1, x_i = s_2)/N(x_{i-1} = s_1)$ for any 'i'. Number of times we were in S_1 .

- Initial $p(x_0 = s)$ and inhomogeneous case need multiple sequences.
 - Need a lot of data if number of states is very large.

Inference in Markov Chains

- Inference: compute probability of being in state 's' at time 't'.
- We are given this for time 0, what about time 't'?
- Inference in length-2 chain:

$$(x_{1}) = \sum_{x_{0}} p(x_{1}, x_{0}) \quad (marginalization rule)$$

$$= \sum_{x_{0}} p(x_{1} | x_{0}) p(x_{0}) \quad (product rule)$$

e) Let mo be a row-vector with elements p(xo). Let P be a matrix with elements $P_{ij} = p(x_i = j/x_o = i)$. Let m_i be a row-vector with elements $p(x_i)$. Then $\mathcal{M}_1 = \mathcal{M}_0 P$.

Matrix notation:

Note: Same as length-2 result.

• Inference in length-3 chain:

$$p(x_{1}) = \sum_{x_{0}} \sum_{x_{2}} p(x_{2}, x_{1}, x_{0}) \quad (merg. rule) \qquad -possible 'futures' do not change present. = \sum_{x_{0}} \sum_{x_{2}} p(x_{2}|x_{1}, x_{0}) p(x_{1}|x_{0}) p(x_{0}) \quad (product rule) \qquad -to get all probabilities = \sum_{x_{0}} \sum_{x_{2}} p(x_{2}|x_{1}) \frac{p(x_{1}|x_{0})p(x_{0})}{p(x_{0})(x_{0})(x_{0})} \quad (Markov property) \qquad \mathcal{M}_{1} = \mathcal{M}_{0} P$$

= $\sum_{x_{0}} p(x_{1}|x_{0})p(x_{0}) \sum_{x_{2}} p(x_{2}|x_{1}) \quad (distributive law: \sum_{i} ca_{i} = c \sum_{i} a_{i})$
= $\sum_{x_{0}} p(x_{1}|x_{0})p(x_{0}) \quad (probabilities sum to 1)$

Inference in Markov Chains

• Inference in length-3 chain:

 $p(x_2) = \sum_{x_1, x_2} \sum_{x_1, x_2} p(x_2, x_1, x_2) \quad (mary. rule)$ $= \underset{x_1}{\leq} \underset{x_2}{\leq} p(x_2(x_1, x_0)p(x_1|x_0)p(x_0) \text{ (prod. rule)}$ $= \sum_{x_1, x_0} \sum_{x_1, x_0} p(x_1 | x_0) p(x_0) \quad (Martrov)$ $= \sum_{x_i} p(x_i | x_i) \sum_{x_0} p(x_i | x_0) p(x_0) (distr. | aw)$ $= \sum_{x_i} \rho(x_2(x_1)) \rho(x_1) \quad (definition of x_1)$

Note: once you have p(x1) for all values of x1, it's easy to compute $p(x_2)$. In matrix notation: Ma = Mip "Chapman-Kolmogorov equation" = Mopp $= \mathcal{M}_0 P^2$ Similarly, $p(x_3) = \sum_{x_1} p(x_3|x_2) p(x_3)$ $M_z = M_0 p^3$ (If inhomogeneous uz=uol, P2P3)

Stationary Distribution of Markov Chains

• After 't' steps, the distribution of states is given by matrix power:

 $M_t = M_0 P^T$

 $\mathcal{M}_{p} = \mathcal{M}_{p} P$

• After each step, we start 'forgetting' initial state.

- Stationary distribution is a steady-state:
- A 'row' eigenvector of 'P' with an eigenvalue of 1.
 Normalized to sum to 1.
- Often approximated using power of P (PageRank: 'power method').
- If P_{ii} > 0, guarantees unique stationary distribution.
 - Otherwise, could have multiple possibilities.
 - Many other conditions guarantee uniqueness.

Decoding in Markov Chains

- A subtle difference:
 - Inference let's us compute $p(x_t = s)$ for any 't' and 's'.
 - This lets us find the most likely state at each time.
 - But probability of states is dependent, may not be mostly likely sequence.
- Finding most likely sequence is called decoding:

$$\begin{array}{l} \left(\operatorname{Argmax}_{x_{0},x_{1},\cdots,x_{t}} \left\{ p(x_{t},x_{t-1},\cdots,x_{0}) \right\} \right) \end{array}$$

- Seems harder than inference:
 - optimal sequence of length 3 may not contain optimal length 2 sequence.
 - but we can solve this problem with dynamic programming.

Decoding in Markov Chains

- Let's consider the best length-2 sequence that ends in state ' x_1 ': Let S consider and $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_{1,X_0}) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1 | x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) = \max_{X_0} p(x_1, x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) p(x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) p(x_0) p(x_0) p(x_0)$ $f(x_1) = \max_{X_0} p(x_1, x_0) p(x_0) p(x_$
- Now let's consider a length-3 sequence that ends in state ' x_2 ':

$$V_{2}(x_{2}) = \max_{\substack{x_{1}, x_{0} \\ x_{1}, x_{0} \\ x_{0} \\ x_{0} \\ x_{1}, x_{0} \\ x_{1}, x_{0} \\ x_{$$

Decoding Markov Chains

• General formula: V(x) = a(x)

$$V_{t}(x_{t}) = \max_{\substack{x_{t-1} \\ x_{t-1}}} p(x_{t} | x_{t-1}) V_{t-1}(x_{t-1})$$

- We have the ingredients for dynamic programming:
 - Efficiently compute solution given recursion result:

$$\max_{x_{0}, x_{1}, \dots, x_{t}} \left\{ p(x_{t}, x_{t-1}, \dots, x_{0}) \right\} = \max_{x_{t}} \left\{ V_{t}(x_{t}) \right\}$$

- Number number of possible recursions: $V_{t'}(x_{t'})$ for each time t' and state $x_{t'}$

- If we memorize results of recursions, we can solve this efficiently.

Summary

- Markov chains used for sequences/time-series/random-walks.
- Sampling is task of simulating sequence according to model.
 - Done by running a random walk.
- Learning is task of estimating parameters from sequences.
 - Done by counting.
- Inference is task of computing probabilities at particular times.
 - Done by matrix multiplication.
- Stationary distribution is steady-state after running for a long time.
 - Done by normalizing eigenvector with largest eigenvalue.
- **Decoding** is task of computing most likely sequence of states.
 - Done by dynamic programming.
- Next time: how Markov models are actually useful (HMMs and belief nets).