CPSC 340:
Machine Learning and Data Mining

Markov Chains
Fall 2015



Admin

* Assignment 6 due Friday.

* Final exam details:
— December 15: 8:30-11 (WESB 100).
— 4 pages of cheat sheet allowed.
— 9 questions.
— Practice questions and list of topics posted.



Last Time: Sequence Alignment

* We discussed finding similar sequences or aligning sequence parts.

— Can find longest common substrings in linear time using suffix trees. ,
— Using dynamic programming, we can compute ‘edit’ distance: . Jfanaanl”

* How many insertions/deletions/replacements to transform A into B? R, 0 ﬁ
' NA
— Local alignment: $/ \NA T a

5 4 2
* Find local regions with small edit distance. ?'RN’%
— BLAST: 1O
° 1 H
Fast substring search to prune search for local alignments. . Scoring
— Multiple sequence alignment: ple[- s
- plels i leg|N Match = +5
* Hierarchical clustering helps align multiple sequences. “To o Jo Jo o o Jo gai;rgatch §
Il (0O |0 [0 |0 |5 |4 (3 - -
D | [D |0 |54 |3 ]84 |43 Aligned:
E| |E |0 |4 [10]9 |8 |7 |6 1: DESIGN  1: DE=5
a| |afo[3 ]9 fo 8|76 2: IDEAS
's | |s o [2 |8 T1alu3[12]11 2: DEAS




Last Time: Dynamic Programming

* Dynamic programming:

— Solves seemingly exponential-sized problems in polynomial-time.
e 3ingredients:

1. Given results of recursive calls, can solve problem efficiently.

2. Limited number of possible arguments recursive calls.

3. Memorize the results of recursive calls.
* Standard ways to implement dynamic programming:

1. Start from final result, use recursion but ‘check’ if result is in global table.
2. Bottom-up: start filling out entries in the table in order.



Example: Matrix Chain Multiplication

* Supposed we want to multiply matrices of different sizes:

— ABCDE. A(BLC(0e))  ABOY
e Cost depends on order of muitlpllgceatlg)on (Oow, 1w ooxl
: 00
~ A(B(C(DE))) vs. A((BO)(DE). ) 5500 » (0 lou mwm
C: 10 * 10000 ogow/
D: 10000 » 10 ()000%
. . coolo~l 0~ ’
* What is the optimal order? awf) )(]x
— There are an exponential number of possible orders. ex; 0/13

— With ‘n” matrices, we can solve this in O(n3) using dynamic programmmg



Example: Matrix Chain Multiplication

* Define the solution recursively: Cost (X[) >(2)>/53 >
— Cost(ABCDE) is minimum of: %
* Cost(ABCD) plus Cost(E) plus cost of combining result. i (a/rmc/\/ COMPH%%{ >
e Cost(ABC) plus Cost(@ZDE) plus cost of combining result. Z
e Cost(AB) plus Cost(CDE) plus cost of combining result.
e Cost(A) plus Cost(BCDE) plus cost of combining result. loaC( r\ggu{f
— We could solve problem in O(n) given recursive calls. (e 7Lt/\w\
* There are only O(n?) possible recursive calls:
— Ordering restricts possible recursions: € /Sz”
 Cost(A), Cost(B), Cost(C), Cost(D), Cost(E), 7 Jo f/“a work ..

e Cost(AB), Cost(BC), Cost(CD), Cost(DE), Cost(ABC), Cost(BCD), Cost(CDE),
* Cost(ABCD), Cost(BCDE).

* If you load results instead of re-computing, total cost is O(n3). “.‘
Sloge ey |t



Markov Chain Example

 Markov chains have a set of ‘times’ and possible ‘states’:

PN

. — .
e 0 [ine | Te 7 Pime
o ~alin (] roln X ,/‘qu ] ) ” i "
no 1 &in N0 ain 0 Ialn ‘@ —7 @,@

( . \
Our stites are  ‘ram’ and 'nst ran'. o each Time vou have To
| . ) /
Ve define fr’abf\[dl/l“xﬂs GV, 'm and  Transidion béfween be n one ot Thex

- Stutrs, Ctafes

P(Xot ran) i WO\%’L”MY of 1f raining at fime
P(X{t (f’@iv\[ lyt‘(:\ﬂd mim{> S fmédmﬂlx/ O7C it F(Einimc) af Time ' (7[

UL wal VJQ% rol;m}m) a7l Thwe -1



Markov Chains

* Modeling the probability of a sequence x,, X, X,, X3, ...

Il)

— At ‘time’ 0, we have a probability p(x, = s) that ‘x;” will be in each ‘state
— At ‘time’ t, we have probability p,(X; =S | Xi.q = Si.1 Xe2 = Stps -+ 5 Xg = Sp):
* Probability that ‘x,” is in state ‘s,, given what has happened so far.

— Based on product rule: ()(Xt) Lty >Xo> Yt lyt P24 Yv)(a XE- /)Xm) )Yo>

VT[(X Xivty Ximg 5=y oj
* Markov chains assume the Markov property:

— Conditional independence assumption: xti Xe0r Xe1s - » Xo | Xegt
* PelX; = Sp | X1 = Seq, Xep = Seps v s Xg = So) = PelXe = 8¢ | Xeq =S¢ 1)

— ‘Memorylessness’: Se P(}(t)yt” )x) P( X,) ll p( | x.. >

* Probability only depends on where you are now, not where you were before



Markov Chain Examples

 We have already seen several examples:
— PageRank, spectral clustering, graph-based SSL (A6Q2).

* PageRank example:
— Each ‘state’ is a webpage on the internet.
— We start on a random page: p(x,=s) = 1/|S]|.
* E.g., www.youtube.com (not really random).
— At each time ‘t’, we click on a random link:
P<Xt:52, Xe 1= Sy) = XET‘ ICSI Tos, link exigjrgl
— If allow moving to new random page (‘damping’):
* Markov property is still satisfied.
— |f time ‘" depends on time ‘t-5":
* Markov property is not satisfied (can’t look at browser history).



http://www.youtube.com/

"AT-rich" wheel

"GC-rich" wheel

»5=0.1, p=0.41, p;=0.39, p,=0.1

— Important special case.

Markov Chain Examples

. In our examples, probabilities were homogeneous:

—_—

— In practice, we often allow time-dependent probabilities.

* Incredible number of other applications:

Melody Generator
s a random melody using Markov Chains built from states

Generate.
and transitions extracted from an analysis of existing songs.

— Bioinformatics, physics/chemistry, speech recognition, predator-prey
models, language tagging/generation, computing integrals, economlc
models, tracking missiles/players, modelmg music.




Markov Chain Tasks

* We are going to focus on discrete time and states.

e Common tasks we want to do with Markov chains:

A T i

Sampling: given model, simulate from p(x,, X, 4, ..., X,)-
Learning: estimating p(x, =s; | X, =s,) to make model.
Inference: given model, compute p,(x, = s).

Stationary distribution: p_.(X.. = s)

-----

Conditional inference: p(x, = S; | X, = S5, Xi110 = S3)-



Sampling from Markov Chains

* Sampling from a Markov chain:
— Generate a sequence X, Xy, ... X; foIIowmg the joint distribution:
P(Xim Yy =y Xo) = plXo >77 p6 L )
— E.g., can we simulate a ‘random web surfer :
* Easy for discrete time/states, a random walk model:
— Generate x, according to p(x,).

— Fori=1,2,..,t
* Given x, ,, generate x; according to p(x; | x ;). R ond onn woll
* Why this works: _ | wes eqcl,
PV@&MU )R/ S/M(g / g o ot raln’ %OU”PC{ The
\—’\—§#
= riin AR ] T = i correct

;pfdfaa/o(/t'fy.



Learning Parameters of Markov Chain

e Learning in Markov chains:
— Given sample(s) of Markov chain, estimate what probabilities should be.

 Maximum likelihood estimates:
— p(xg=5) =N(x,=s)/N7""—— /\uméw ot SW”WE’S we have

rmmzw ot 7L/MP> we starT with Xo— S

— Inhomogeneous case:

umhor of Times we witre in '
* PuX =8, X1 =51) = N(xpq =55, X, =5,)/N(x; = Sl)./\J> L L)Q © 5 é 5 af 7;””

t-1)

Num b or ()‘(: Samr/w whee we u/€m7L Lomn s, +O S o\T‘f’/me (‘f’l)
— Homogeneous case.: 2

* p(x;=5s,| X1 =5;) = N(x.; =55, X, =5,)/N(x,; =s,) for any . Numbar of Fmes we were in <,

k/\d”zww{ofr 070 Thwe s we wenl  From g o &

* Initial p(x, = s) and inhomogeneous case need multiple sequences.
— Need a lot of data if number of states is very large.



Inference in Markov Chains

* |Inference: compute probability of being in state ‘s’ at time ‘t’".
* We are given this for time 0, what about time ‘t’?
* Inference in length-2 chain: Matri, ot ution:

(f')(x(>: 2{0()(17 Xo> (/V\QMg'/mm/izq]Lzom }AM/T> LQWL Mg be o @"/‘Vé’c%dr
yo W>( fé\ Q{QVMQV\]LQ ﬁ) (XO>

- % r(X,lX()ﬂXo) ({)HO(VML rm/f> LﬁﬂL p EB 4 VV‘WLF/'X Wﬂll\
0 ¢ lemeonts p‘d = ()(y,‘—'J‘ /xo‘:{).

Sum oyer \/a(m@g mo Xo> Summi'wj LNL M loé/ o row— e clor
w1 Th ‘éémw\ﬁ |0(>([>

Tt)éh /M,’:/(/{,DF.

We
Froﬁoqki(if\/ of ‘eac(iv‘j fo X,.



g/" " Inference in Markov Chains

£=2
* Inference in length-3 chain: Note: Same _as length 2 resuft
GD(X{> i i F()(z X X0> (VV\W ru ) _’6)059@/{ )—R/ju’/ﬁl ‘JO V)O7L
X5 X7 C%ancje {)régpm%‘
o i i F(X,z ,)X07f(x P >,0()(0> ( roduT N’@) " +O gmL Pro@g L)i/}fié%

/% P
’Zi )(02 )(>[p()( )r) x() /‘/‘ar/\av VW/)WLY) X/L 4/(

XO )(al

_ﬁé IXJ() xo (c\[#r wlive low ZCq/ = C i@>

263( \Xo> XO> ((ooqmdﬂ Sum o )




Inference in Markov Chains

NO]A@ once \/UL/\ L\Ou/é {J(X(> q%f

* Inference in length-3 chain: \ r
A \/O‘lVlQS 0 X,? 17L5<_f01_§’1

P(X27 Zélp( )() (rwzt m)

X XD

TC? (Om,a u(f@ ,’D(XQ )

=z =z 06 /X; X()) (¥, 1x,) (X> (prod. rule) L mafriy notation
X Xof R | !
— [P le\aﬁwlom /fo/m oroy/

— [ /{/L‘l/ Cqua Om 7
R

- 2 V(X»?lxl f */0> (x,) (dist, 2wy) =
X, X N)NO/) gfvv\i(ar% (1) = f o xQ//;)

-~ é F<Xl[><1>f(>((> CJ”C“”L o of X’> ' =



Stationary Distribution of Markov Chains

After ‘t’ steps, the distribution of states is given by matrix power:

/M’(f f/bﬁgf—t
After each step, we start ‘forgetting’ initial state.

Stationary distribution is a steady-state:
= by P

A ‘row’ eigenvector of ‘P’ with an eigenvalue of 1.
— Normalized to sum to 1.
Often approximated using power of P (PageRank: ‘power method’).

If P;> 0, guarantees unique stationary distribution.
— Otherwise, could have multiple possibilities.
— Many other conditions guarantee uniqueness.



Decoding in Markov Chains

* A subtle difference:
— Inference let’s us compute p(x, = s) for any ‘t" and s’.
— This lets us find the most likely state at each time.
— But probability of states is dependent, may not be mostly likely sequence.

* Finding most likely sequence is called decoding:

QL gmay g/‘p(%@ )(6,,7—,,7)(0;

XU)X')"‘)Yt

 Seems harder than inference:
— optimal sequence of length 3 may not contain optimal length 2 sequence.
— but we can solve this problem with dynamic programming.



Decoding in Markov Chains

e Let’s con5|defr;he best length-2 sequence that ends in state x,”:
ST 4e

\/(x>’“ me 6)6{‘ xo> = me 09 X, le}p(x)

A
7)/%&\@ “\/Oll"lf\ 070 hest Se

* Now let’s consider a length-3 sequence that ends in state ‘x,’

\/ ()(2> = Max ()(XZDXQXO

X)X

jutnce MF To time |1 That euds in State X

= May{pag Xz) YO>§ ( max of max' Nlck) ff*{j{")’:\)
MaAX O(LDg:Olmay E/ X Xo 1%
| (for |0f7/ 0) - M;‘YEW\X“OV 0) )(Ql)(, XD>§ ( foﬁ( ml@ and Mor on) /
1 = maw(é()&ll%) fVlOU( GJCX [ 1,) Xo)? S— mayff[xg[x> \/(X >}




Decoding Markov Chains

e General formula: V (x7:

\/ﬁ (x, )= may f(xf | xﬁ_) \4_( (Xh/)

Ae-i
 We have the ingredients for dynamic programming:

— Efficiently compute solution given recursion result:
Moy —
XoyXy 9% } V)(y@x“’f“) S me% \/t('xf ?

— Number number of possible recursions: \/t' Xﬁ'> tor each Tme T

wmd stafe  x,
— |If we memorize results of recursions, we can solve this efficiently.






Summary

Markov chains used for sequences/time-series/random-walks.
Sampling is task of simulating sequence according to model.
— Done by running a random walk.
Learning is task of estimating parameters from sequences.
— Done by counting.
Inference is task of computing probabilities at particular times.
— Done by matrix multiplication.
Stationary distribution is steady-state after running for a long time.
— Done by normalizing eigenvector with largest eigenvalue.

Decoding is task of computing most likely sequence of states.
— Done by dynamic programming.

Next time: how Markov models are actually useful (HMMs and belief nets).



