
CPSC 340:
Machine Learning and Data Mining

Markov Chains

Fall 2015

Admin

• Assignment 6 due Friday.

• Final exam details:

– December 15: 8:30-11 (WESB 100).

– 4 pages of cheat sheet allowed.

– 9 questions.

– Practice questions and list of topics posted.

Last Time: Sequence Alignment

• We discussed finding similar sequences or aligning sequence parts.

– Can find longest common substrings in linear time using suffix trees.

– Using dynamic programming, we can compute ‘edit’ distance:

• How many insertions/deletions/replacements to transform A into B?

– Local alignment:

• Find local regions with small edit distance.

– BLAST:

• Fast substring search to prune search for local alignments.

– Multiple sequence alignment:

• Hierarchical clustering helps align multiple sequences.

https://en.wikipedia.org/wiki/Suffix_tree
http://2012.igem.org/Team:Johns_Hopkins-Software/Cloud

Last Time: Dynamic Programming

• Dynamic programming:

– Solves seemingly exponential-sized problems in polynomial-time.

• 3 ingredients:

1. Given results of recursive calls, can solve problem efficiently.

2. Limited number of possible arguments recursive calls.

3. Memorize the results of recursive calls.

• Standard ways to implement dynamic programming:

1. Start from final result, use recursion but ‘check’ if result is in global table.

2. Bottom-up: start filling out entries in the table in order.

Example: Matrix Chain Multiplication

• Supposed we want to multiply matrices of different sizes:

– ABCDE.

• Cost depends on order of multiplication:

– A(B(C(DE))) vs. A((BC)(DE)).

• What is the optimal order?

– There are an exponential number of possible orders.

– With ‘n’ matrices, we can solve this in O(n3) using dynamic programming.

Example: Matrix Chain Multiplication

• Define the solution recursively:
– Cost(ABCDE) is minimum of:

• Cost(ABCD) plus Cost(E) plus cost of combining result.

• Cost(ABC) plus Cost(CDE) plus cost of combining result.

• Cost(AB) plus Cost(CDE) plus cost of combining result.

• Cost(A) plus Cost(BCDE) plus cost of combining result.

– We could solve problem in O(n) given recursive calls.

• There are only O(n2) possible recursive calls:
– Ordering restricts possible recursions:

• Cost(A), Cost(B), Cost(C), Cost(D), Cost(E),

• Cost(AB), Cost(BC), Cost(CD), Cost(DE), Cost(ABC), Cost(BCD), Cost(CDE),

• Cost(ABCD), Cost(BCDE).

• If you load results instead of re-computing, total cost is O(n3).

Markov Chain Example
• Markov chains have a set of ‘times’ and possible ‘states’:

Markov Chains

• Modeling the probability of a sequence x0, x1, x2, x3,…

– At ‘time’ 0, we have a probability p(x0 = s) that ‘x0’ will be in each ‘state’ ‘s’.

– At ‘time’ t, we have probability pt(xt = st | xt-1 = st-1, xt-2 = st-2, … , x0 = s0):

• Probability that ‘xt’ is in state ‘st’, given what has happened so far.

– Based on product rule:

• Markov chains assume the Markov property:

– Conditional independence assumption: xt xt-2, xt-1, … , x0 | xt-1:

• pt(xt = st | xt-1 = st-1, xt-2 = st-2, … , x0 = s0) = pt(xt = st | xt-1 = st-1).

– ‘Memorylessness’:

• Probability only depends on where you are now, not where you were before.

Markov Chain Examples

• We have already seen several examples:
– PageRank, spectral clustering, graph-based SSL (A6Q2).

• PageRank example:
– Each ‘state’ is a webpage on the internet.

– We start on a random page: p(x0 = s) = 1/|S|.
• E.g., www.youtube.com (not really random).

– At each time ‘t’, we click on a random link:

– If allow moving to new random page (‘damping’):
• Markov property is still satisfied.

– If time ‘t’ depends on time ‘t-5’:
• Markov property is not satisfied (can’t look at browser history).

http://www.youtube.com/

Markov Chain Examples

• In our examples, probabilities were homogeneous:

– Important special case.

– In practice, we often allow time-dependent probabilities.

• Incredible number of other applications:

– Bioinformatics, physics/chemistry, speech recognition, predator-prey
models, language tagging/generation, computing integrals, economic
models, tracking missiles/players, modeling music.

https://en.wikipedia.org/wiki/Markov_chain
http://www.cs.uml.edu/ecg/index.php/AIfall11/MarkovMelodyGenerator
http://a-little-book-of-r-for-bioinformatics.readthedocs.org/en/latest/src/chapter10.html
https://plus.maths.org/content/understanding-unseen
http://www.cs.ubc.ca/~okumak/research.html

Markov Chain Tasks

• We are going to focus on discrete time and states.

• Common tasks we want to do with Markov chains:

1. Sampling: given model, simulate from p(xt, xt-1, … , x0).

2. Learning: estimating p(xt = s1 | xt = s2) to make model.

3. Inference: given model, compute pt(xt = s).

4. Stationary distribution: p∞(x∞ = s).

5. Decoding: maxy1,y2,…,yt p(xt, xt-1, xt-2, … , x0).

6. Conditional inference: p(xt = s1 | xt-1 = s2, xt+10 = s3).

Sampling from Markov Chains

• Sampling from a Markov chain:

– Generate a sequence x0, x1, … xt following the joint distribution:

– E.g., can we simulate a ‘random web surfer’?

• Easy for discrete time/states, a random walk model:

– Generate x0 according to p(x0).

– For i = 1,2,…,t

• Given xi-1, generate xi according to p(xi | xi-1).

• Why this works:

Learning Parameters of Markov Chain

• Learning in Markov chains:
– Given sample(s) of Markov chain, estimate what probabilities should be.

• Maximum likelihood estimates:
– p(x0 = s) = N(x0 = s)/N.

– Inhomogeneous case:
• pt(xt = s2| xt-1 = s1) = N(xt-1 = s1, xt = s2)/N(xt-1 = s1).

– Homogeneous case:
• p(xt = s2| xt-1 = s1) = N(xi-1 = s1, xi = s2)/N(xi-1 = s1) for any ‘i’.

• Initial p(x0 = s) and inhomogeneous case need multiple sequences.
– Need a lot of data if number of states is very large.

Inference in Markov Chains

• Inference: compute probability of being in state ‘s’ at time ‘t’.

• We are given this for time 0, what about time ‘t’?

• Inference in length-2 chain:

Inference in Markov Chains

• Inference in length-3 chain:

Inference in Markov Chains

• Inference in length-3 chain:

Stationary Distribution of Markov Chains

• After ‘t’ steps, the distribution of states is given by matrix power:

• After each step, we start ‘forgetting’ initial state.

• Stationary distribution is a steady-state:

• A ‘row’ eigenvector of ‘P’ with an eigenvalue of 1.
– Normalized to sum to 1.

• Often approximated using power of P (PageRank: ‘power method’).

• If Pij > 0, guarantees unique stationary distribution.
– Otherwise, could have multiple possibilities.

– Many other conditions guarantee uniqueness.

Decoding in Markov Chains

• A subtle difference:

– Inference let’s us compute p(xt = s) for any ‘t’ and ‘s’.

– This lets us find the most likely state at each time.

– But probability of states is dependent, may not be mostly likely sequence.

• Finding most likely sequence is called decoding:

• Seems harder than inference:

– optimal sequence of length 3 may not contain optimal length 2 sequence.

– but we can solve this problem with dynamic programming.

Decoding in Markov Chains

• Let’s consider the best length-2 sequence that ends in state ‘x1’:

• Now let’s consider a length-3 sequence that ends in state ‘x2’:

Decoding Markov Chains

• General formula:

• We have the ingredients for dynamic programming:

– Efficiently compute solution given recursion result:

– Number number of possible recursions:

– If we memorize results of recursions, we can solve this efficiently.

Summary

• Markov chains used for sequences/time-series/random-walks.
• Sampling is task of simulating sequence according to model.

– Done by running a random walk.

• Learning is task of estimating parameters from sequences.
– Done by counting.

• Inference is task of computing probabilities at particular times.
– Done by matrix multiplication.

• Stationary distribution is steady-state after running for a long time.
– Done by normalizing eigenvector with largest eigenvalue.

• Decoding is task of computing most likely sequence of states.
– Done by dynamic programming.

• Next time: how Markov models are actually useful (HMMs and belief nets).

