CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2015
Admin

- Office hours tomorrow will be in ICICS 146.
- Assignment 5:
 - Q1-2 on Piazza Saturday.
 - Full assignment coming tonight.
 - ‘Tutorial summary’ coming soon.
Last Time: Deep Learning

Neural networks:

Single-layer neural network:
\[\hat{y}_i = w^T h(W x_i) \]

"Deeper" neural network:
\[\hat{y}_i = w^T h(W_{(2)} h(W_{(1)} x_i)) \]
Fitting Deep Neural Networks

• Deep neural network model:

\[\hat{y}_i = w^\top h(W_{(3)} h(W_{(2)} h(W_{(1)} x_i))) \]

• Highly non-convex in the parameter \(W_{(1)}, W_{(2)}, W_{(3)}, w. \)

• We discussed a few tricks for training deep neural networks:
 – Replacing sigmoids with alternatives like logistic loss.
 – Careful selection of stochastic gradient step size (manual or automatic).
 – Momentum.

• Today:
 – Parameter initialization.
 – What happened to the fundamental trade-off?
Parameter Initialization

• **Parameter initialization** is crucial:
 – Can’t initialize weights in same layer to same value, or they will stay same.
 – Can’t initialize weights too large, it will take too long to learn.

• Random initialization:
 – Set bias variables to 0.
 – Uniformly sample from standard normal, divided by 10,000 (0.00001*randn).
 – Performing multiple initializations does not seem to be important.

• More recent:
 – Use different initialization in each layer.
 – Try to make variance the same across layers.
 – Use sample from standard normal, divide by sqrt(2*nInputs).

• Another strategy is to use a deep unsupervised model to initialize.
Autoencoders

- **Autoencoders** are an unsupervised deep learning model:
 - Use the inputs as the output of the neural network.
 - If middle layer has only 2 units, can use this for visualization.
 - Common to add noise to inputs (‘denoising’ autoencoder).
Autoencoders
Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:
 – As we increase the depth, training error decreases.
 – As we increase the depth, training error no longer approximates test error.
• We want deep networks to model high non-linear data.
• But increasing the depth leads to overfitting.
• How could systems like GoogLeNet using ~30 layers?
 – Many forms of regularization and keeping model complexity under control.
Standard Regularization

• We typically add our usual L2-regularizers:

\[\alpha \arg \min_{w_{\theta}, w_{\phi}, w_{\phi_2}} \frac{1}{2} \sum_{i=1}^{n} (y_i - w^T h(w_{\phi}, h(w_{\phi_2}, h(w_{\theta}, x_i))))^2 + \frac{\lambda_1}{2} \|w\|^2 + \frac{\lambda_2}{2} \|w_{\phi}\|^2 \frac{\lambda_3}{2} \|w_{\phi_2}\|^2 + \frac{\lambda_4}{2} \|w_{\theta}\|^2 \]

• Called ‘weight decay’ in neural network literature.

• Could also use L1-regularization.

• ‘Hyper-parameter’ optimization:
 – Try to optimize validation error in terms of \(\lambda_1, \lambda_2, \lambda_3, \lambda_4\).

• Unlike linear models, this is rarely the only form of regularization.
Early Stopping

• Even with regularization, stochastic gradient may still overfit.
• Regularization by *early stopping*:
 – Monitor the validation error as we run stochastic gradient.
 – Stop the algorithm if validation error starts increasing.
• dropout is a third form of regularization:
 – On each iteration, randomly set some x_i and z_i to zero (often use 50%).

 – Encourages distributed representation rather than using specific z_i.

Convolutional Neural Networks

• Typically use multiple types of regularization:
 – L2-regularization.
 – Early stopping.
 – Dropout.

• Often, still not enough to get deep models working.

• Deep models most used are convolutional neural networks:
 – Place heavy restrictions on the elements of each $W^{(m)}$.
 – Sizes of $z_i^{(m)}$ and functions ‘h’ change at each level.
Discrete Convolution

- Given ‘n’ values ‘x’ with indices j=1,2,...,n.
- We define weights ‘w’ with indices j=-m,-m+1,...,-2,0,1,2,...,m-1,m.
- The discrete convolution ‘∗’ of ‘x’ with ‘g’ at ‘i’ given by

\[(x \ast w)[i] = \sum_{j=-m}^{m} x_{i+j} w_{j}\]

- This is an inner product between ‘w’ and part of ‘x’:

\[w \, \chi_{(-m;m)} \]
Discrete Convolution Example

• Given ‘n’ values ‘x’ with indices j=1,2,...,n.
• We define weights ‘w’ with indices j=-m,-m+1,...,-2,0,1,2,...,m-1,m.
• The discrete convolution ‘*’ of ‘x’ with ‘g’ at ‘i’ given by

\[
(x * w)[i] = \sum_{j=-m}^{m} x_{i+j} w_j
\]

• This is an inner product between ‘w’ and part of ‘x’:

\[
X = [1 \quad 2 \quad 3 \quad 5 \quad 7 \quad 11]
\]

\[
W = [1/3 \quad 1/3 \quad 1/3]
\]

• For example:

\[
(x * w)[2] = 1(\frac{1}{3}) + 2(\frac{1}{3}) + 3(\frac{1}{3}) = 2
\]

\[
(x * w)[5] = 5(\frac{1}{3}) + 7(\frac{1}{3}) + 11(\frac{1}{3}) = 7 \frac{2}{3}
\]
Discrete Convolution Example

Let \(x = [1 \ 2 \ 3 \ 5 \ 7 \ 11] \)

If \(w = [0 \ 1 \ 0] \) then \((x \ast w)(i) \) returns \(x_i \)
Discrete Convolution Example

Let $x = [1 \ 2 \ 3 \ 5 \ 7 \ 11]$

If $w = [0 \ 1 \ 0]$ then $(x * w)[4]$ returns x_4

$(x * w)[4] = [3 \ 5 \ 7]w$

$$= 3(0) + 5(1) + 7(0)$$

$$= 5$$

$$= x_5$$

"Identity convolution"
Discrete Convolution Example

Let \(x = [1, 2, 3] \) \(\begin{bmatrix} 5 & 7 & 11 \\ \end{bmatrix} \) positions

If \(w = [1, 0, 0] \) then \((x * w)[i] \) returns \(x_{i-1} \)

\[
(x * w)[5] = 5 \begin{bmatrix} 5 & 7 & 11 \end{bmatrix} w
\]

\[
= 5(1) + 7(0) + 11(0)
\]

\[
= 5
\]
Discrete Convolution Example

Let \(x = [1 \ 2 \ 3 \ 5 \ 7 \ 11] \)

If \(w = [1 \ 0 \ 0] \) then \((x \ast w)[i]\) returns \(x_{i-1} \)

\[
(x \ast w)[5] = [5 \ 7 \ 11]w \\
= 5(1) + 7(0) + 11(0) \\
= 5
\]

If we apply it to each position, we get a translated signal:

\[
x = [1 \ 2 \ 3 \ 5 \ 7 \ 11] \\
(x \ast w) = [? \ 1 \ 2 \ 3 \ 5 \ 7]
\]
Discrete Convolution Example

Let \(x = [1 \ 2 \ 3 \ 5 \ 7 \ 11] \)

If \(w = [\frac{1}{3} \ \frac{1}{3} \ \frac{1}{3}] \) then \((x \ast w)(i)\) returns the average of \(x_{i-1}, x_i, \) and \(x_{i+1}\).

\[
(x \ast w)[5] = 5(\frac{1}{3}) + 7(\frac{1}{3}) + 11(\frac{1}{3}) = \frac{5 + 7 + 11}{3} = 7 \frac{3}{3}
\]

Applying it to all elements gives "local" average:

\[
x = [1 \ 2 \ 3 \ 5 \ 7 \ 11] \]

\[
(x \ast w) = [? \ 2 \ 3\frac{1}{3} \ 5 \ 7\frac{3}{3} \ ?]
\]
Interpretation as Matrix Multiplication

• Convolution as inner product of with ‘w’ padded with zeros and ‘x’:

\[\hat{w}^T x \]

where \(\hat{w} = [0 \ 0 \ 0 \ \underbrace{w \ \ldots \ \text{positions } i-m \text{ through } i+m} \ 00] \)

• Convolution for all ‘i’ is a matrix multiplication:

\[(x * w) = \hat{W} x \]

where \(\hat{W} = \begin{bmatrix} \underbrace{w \ \ldots \ \text{up to boundary issue}} & 000 \\ 0 & \underbrace{w \ \ldots \ \text{up to boundary issue}} & 000 \\ 0 & 0 & \underbrace{w \ \ldots \ \text{up to boundary issue}} & 000 \end{bmatrix} \)

• It is a special case of a latent-factor models (up to boundary issue).
Boundary Issue

• The boundary issue:

\[\tilde{\mathbf{w}} = [0 \ 0 \ 0 \ \ldots \ 0 \ 0] \]
\[\mathbf{x} = [\ldots] \]

• Various ways to deal with the ‘?’ marks:
 – Don’t compute these values.
 – Assume that they are 0.
 – ‘Replicate’ value at boundary.
 – ‘Mirror’ values at boundary.
 • \(x_{n+1} = x_{n-1}, \ x_{n+2} = x_{n-2}, \) etc.
Discrete Convolution Examples

• Convolutions can return the original signal:

\[x = [0 0 0 \ldots 0.4 \ldots 0.1 \ldots 0] \]

\[\ast [0 0 0 1 0 0] = \]

\[\ast [0 0 0 1 0 0] = \]

\[\ast [0 0 0 1 0 0] = \]

\[\ast [0 0 0 1 0 0] = \]
Discrete Convolution Examples

• Convolutions can translate the signal:

\[\ast \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]
Discrete Convolution Examples

- Convolutions can locally average the signal:
Discrete Convolution Examples

• Convolutions can **smooth** the signal:
Discrete Convolution Examples

- Convolutions can detect edges in the signal:

"Laplacian of Gaussian filter" (approximation to second derivative of Gaussian)
Discrete Convolution Examples

- Convolutions can **detect oriented edges** in the signal:

"Gabor-like filter"
Gaussian times cosine.
Image and Higher-Order Convolution

• Let ‘x’ be the pixel intensities in grayscale image of size ‘n’ by ‘n’.
 – Indexed 1 through n.

• Let ‘w’ be a smaller image of size ‘2m+1’ by ‘2m+1’.
 – Indexed –m through m.

• The two-dimensional convolution is given by:
 \[
 (x \ast w)(i, j) = \sum_{i_1 = -m}^{m} \sum_{j_2 = -m}^{m} x(i + i_1, j + j_2) \cdot w(i_1, j_2)
 \]

• Higher-order convolutions are defined similarly.
Image Convolution Examples

Identity convolution

multiply and add
Image Convolution Examples

Translation

Boundary: "use 0"
Image Convolution Examples

Translation

Boundary: "cycle"
Image Convolution Examples

Translation

Boundary: "replicate"
Image Convolution Examples

Translation

Boundary: "mirror"
Image Convolution Examples

\[
\star \frac{1}{51} \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{bmatrix} =
\]

"Local average"
Image Convolution Examples

"Gaussian Filter"
Image Convolution Examples

"Gaussian filter"

\[\star \]

smaller variance
Image Convolution Examples

"Laplacian of Gaussian"

Similar preprocessing may be done in ganglia and LGN.
Image Convolution Examples

"Laplacian of Gaussian"

Smaller variance

Similar preprocessing may be done in ganglia and LGN.
Image Convolution Examples

"Gabor-like filter"

Horizontal oriented edges

May be similar to effect of "simple cells" in V1.
Image Convolution Examples

"Gabor-like filter"

Vertical oriented edges

May be similar to effect of "simple cells" in V1.
Image Convolution Examples

"Gabor-like filter"

Smaller variance

Vertical oriented edges

May be similar to effect of "simple cells" in V1.
Image Convolution Examples

"Gabor-like filter"

\[
\begin{array}{cc}
\ast & \ast \\
\end{array}
\]

Smaller variance

Horizontal oriented edges

May be similar to effect of "simple cells" in V1.
Motivation for Convolutional Neural Networks

• Consider training neural networks on 256 by 256 images.
• Each z_i in first layer has 65536 parameters (and 3x this for colour).
 – We want to avoid this huge number (avoid storage and overfitting).
• Key idea: treat Wx_i like a convolution (to make it smaller).
• Make it more like a normal image convolution:
 – Each row of W only applies to part of x_i.
 – Use the same parameters between rows.
• Same idea applies to speech, images, and maybe language.
Convolutional Neural Networks

- Convolutional Neural Networks are neural with 3 layer types:
 - **Fully connected layer**: usual neural network layer with unrestricted W.
 - **Convolutional layer**: restrict W to results of several convolutions.

1D example:

$$ W = \begin{bmatrix} w_1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w_1 & 0 & 0 \\ 0 & 0 & 0 & w_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & w_1 & 0 \\ 0 & 0 & 0 & 0 & 0 & w_1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $$

- The distance between centers is called "stride".
- Parameter w_1 is "shared" across locations.
Convolutional Neural Networks

• Convolutional Neural Networks are neural with 3 layer types:
 – **Fully connected layer**: usual neural network layer with unrestricted W.
 – **Convolutional layer**: restrict W to results of several convolutions.
 – **Pooling layer**: downsamples result of convolution to make results smaller.
 • Usual choice is ‘**max pooling**’:

![Diagram showing max pooling on a 4x4 grid]
LeNet for Optical Character Recognition

http://blog.csdn.net/strint/article/details/44163869
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.
AlexNet (ImageNet Winner in 2011)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

Figure 3: 96 convolutional kernels of size $11 \times 11 \times 3$ learned by the first convolutional layer on the $224 \times 224 \times 3$ input images. The...
GoogLeNet (2014 Winner)

During training, use loss that depends on prediction at 3 depths.
At test time, only use deepest prediction.

Summary

• Parameter initialization is crucial to neural network performance.
• Autoencoders perform dimensionality reduction with neural nets.
• Regularization is crucial to neural net performance:
 – Usual L2, early stopping, dropout.
• Convolutions are flexible class of signal/image transformations.
• Convolutional neural networks are key in deep learning success.

• Next time: what if the output is not continuous/binary?