CPSC 340:
Machine Learning and Data Mining

Convolutional Neural Networks
Fall 2015



Admin

e Office hours tomorrow will be in ICICS 146.

* Assignment 5:
— Q1-2 on Piazza Saturday.
— Full assignment coming tonight.
— ‘Tutorial summary’ coming soon.
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Fitting Deep Neural Networks

Deep neural network model:

>//? = w ' h(Wg h( W) L’(\/M Xj>>>

Highly non-convex in the parameter W), Wiy, Wig), W.

We discussed a few tricks for training deep neural networks:

— Replacing sigmoids with alternatives like logistic loss.

— Careful selection of stochastic gradient step size (manual or automatic).
— Momentum.

Today:

— Parameter initialization.

— What happened to the fundamental trade-off?



Parameter Initialization

Parameter initialization is crucial:

— Can’t initialize weights in same layer to same value, or they will stay same.
— Can’t initialize weights too large, it will take too long to learn.

Random initialization:

— Set bias variables to 0.

— Uniformly sample from standard normal, divided by 10,000 (0.00001*randn).
— Performing multiple initializations does not seem to be important.
More recent:

— Use different initialization in each layer.

— Try to make variance the same across layers.

— Use sample from standard normal, divide by sgrt(2*ninputs).

Another strategy is to use a deep unsupervised model to initialize.



Autoencoders

* Autoencoders are an unsupervised deep learning model:

— Use the inputs as the output of the neural network.

encoder decoder

W1 w2 w2" w1

— |If middle layer has only 2 units, can use this for visualization.
— Common to add noise to inputs (‘denoising’ autoencoder).



Autoencoders

/4 VJLO\?V\ (of{ﬁf

European Community
Interbank markets monetary/economic

Disasters and
accidents

-’

Leadingeconomig'. S oy K 5

indicators ‘ g ‘3;

- > o'." e
a0 g o .& ."'\2 o .
“ 77 Lo Government
! ,\.‘r°

Accounts/ . iy borrowings

eamings 3'.



Deep Learning and the Fundamental Trade-Off

Neural networks are subject to the fundamental trade-off:
— As we increase the depth, training error decreases.
— As we increase the depth, training error no longer approximates test error.

We want deep networks to model high non-linear data.
But increasing the depth leads to overfitting.

How could systems like GooglLeNet using ~30 layers?
— Many forms of regularization and keeping model complexity under control.



Standard Regularization

* We typically add our usual L2-regularizers:
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e Called ‘weight decay’ in neural network literature.
* Could also use L1-regularization.
* ‘Hyper-parameter’ optimization:

— Try to optimize validation error in terms of A, A,, A5, A,.

* Unlike linear models, this is rarely the only form of regularization.



Early Stopping

* Even with regularization, stochastic gradient may still overfit.
* Regularization by ‘early stopping’:

— Monitor the validation error as we run stochastic gradient.

— Stop the algorithm if validation error starts increasing.

accuracy training accurac
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Dropout

* Dropout is a third form of regularization:
— On each iteration, randomly set some x. and z, to zero (often use 50%).
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(a) Standard Neural Net (b) After applying dropout.
— Encourages distributed representation rather than using specific z.



Convolutional Neural Networks

* Typically use multiple types of regularization:
— L2-regularization.
— Early stopping.
— Dropout.

* Often, still not enough to get deep models working.

* Deep models most used are convolutional neural networks:
— Place heavy restrictions on the elements of each W ..
— Sizes of (M and functions ‘h’ change at each level.



Discrete Convolution

Given ‘n’ values x’ with indices j=1,2,...,n.
We define weights ‘w’ with indices j=-m,-m+1,...-2,0,1,2,...,m-1,m.
The discrete convolution “*’ of x” with ‘g’ at ‘i’ given by

m

<>< x* W>Ei] — Z Xy W,
(= -m

This is an inner product between ‘w’ and part of x’:
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Discrete Convolution Example

* Given ‘n’ values X’ with indices j=1,2,...,n.
* We define weights ‘w’ with indices j=-m,-m+1,...-2,0,1,2,...,m-1,m.
* The discrete convolution “*’ of x” with ‘g’ at ‘i’ given by

(x ¥ w)(i] = F X, W,

=

* This is an inner product between ‘w’ and part of x’:
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Discrete Convolution Example
L@L =Ll 2 3 5 7 |
T w=L0 | 07 tThen (x+wWl] refuns X



Discrete Convolution Example
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Discrete Convolution Example

(x ¥ )5 D=[5 7 1Nw
— 5+ 7200)+ 11(p)
=5



Discrete Convolution Example
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Discrete Convolution Example
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Interpretation as Matrix Multiplication

* Convolution as inner product of with ‘w’ padded with zeros and x":
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e Convolution for all ‘i’ is a matrix multiplication:
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* |tis a special case of a latent-factor models (up to boundary issue).



Boundary Issue
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* The boundary issue: P N
w=[D 6 0 -- 00 T w1
L A

* Various ways to deal with the ?” marks:
— Don’t compute thse values.
— Assume that they are 0.
— ‘Replicate’ value at boundary.
— ‘Mirror’ values at boundary.

* Xn+1 = Xn-l’ Xn+2 =X etc.

n-2/



Discrete Convolution Examples

* Convolutions can return the original signal:




Discrete Convolution Examples

* Convolutions can translate the signal:
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Discrete Convolution Examples

* Convolutions can locally average the signal:




Discrete Convolution Examples

* Convolutions can smooth the signal:
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Discrete Convolution Examples

e Convolutions can detect edges in the signal:

filter”

AN ,
[,cz lo\clm/\ OWC GJ\V\SS(W\

QO\W@X’MO\*;W\ 1o s cond

A@r‘r\/q“}]fo OWC

(7 owxssiom)

0.08

0.04 -

0.02 -

-0.04 -
-0.06 -

-0.08
o]

I
20

I
30

|
40

50

60

70

80

90

100



Discrete Convolution Examples

* Convolutions can detect oriented edges in the signal:
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Image and Higher-Order Convolution

Let ‘x” be the pixel intensities in grayscale image of size ‘n’ by ‘n’.
— Indexed 1 through n.

Let ‘W’ be a smaller image of size ‘2m+1’ by 2m+1’.
— Indexed —m through m.

The two-dimensional convolution is given by:

M M
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Higher-order convolutions are defined similarly.



Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples




Image Convolution Examples




Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples

\/Q A cal 0“1%)[9,3 @«%@5
/WWW he sl g *0 oHoct ot

umﬁe cels™ vl




Image Convolution Examples

i

S paller variance

\/Q rJH cq\ Of‘lfnj(eé 945@5

My bt sl fo oFect of

nmﬁe cels™ vl




Image Convolution Examples
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Motivation for Convolutional Neural Networks

Consider training neural networks on 256 by 256 images.

Each z in first layer has 65536 parameters (and 3x this for colour).
— We want to avoid this huge number (avoid storage and overfitting).

Key idea: treat Wx. like a convolution (to make it smaller).

Make it more like a normal image convolution:
W:C C o (0 —mw —— 000}
|

— Each row of W only applies to part of x..
w —— 00000

— Use the same parameters between rows. W, = L0

Same idea applies to speech, images, and maybe language.



Convolutional Neural Networks

* Convolutional Neural Networks are neural with 3 layer types:
— Fully connected layer: usual neural network layer with unrestricted W.

— Convolutional layer: restrict W to results of several convolutions. L
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Convolutional Neural Networks

* Convolutional Neural Networks are neural with 3 layer types:
— Fully connected layer: usual neural network layer with unrestricted W.
— Convolutional layer: restrict W to results of several convolutions.
— Pooling layer: downsamples result of convolution to make results smaller.

e Usual choice is ‘max pooling’:

Mayimums in X7
hekﬁhkomr%ogéj




LeNet for Optical Character Recognition




AlexNet (ImageNet Winner in 2011)

R ;'1 1_‘.-‘- | r-t:-. -_:. P 3 N
5 3 “ 3" -
48 .. ‘.:__,.- 197 192 128 2048 2048 dense
55 27 128 - ‘,
13
"I,I“'. -:?. A
224 of | 3|y . J R . .
. . 3 e
7 3\;.:: 3 13 dense dense
3 1000
182 182 128 Max
. 2048
Max 128 Max pooling 2048
pooling pooling
3 48

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43,264—

4096—4096—1000.
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Figure 3: 96 convolutional kernels of size
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440-186,624-64,896-64,896—43,264—

4096—4096-1000.
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GooglLeNet (2014 Winner)
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Summary

Parameter initialization is crucial to neural network performance.
Autoencoders perform dimensionality reduction with neural nets.

Regularization is crucial to neural net performance:
— Usual L2, early stopping, dropout.

Convolutions are flexible class of signal/image transformations.
Convolutional neural networks are key in deep learning success.

Next time: what if the output is not continuous/binary?



