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Admin

• Office hours tomorrow will be in ICICS 146.

• Assignment 5:

– Q1-2 on Piazza Saturday.

– Full assignment coming tonight.

– ‘Tutorial summary’ coming soon.

http://www.october212015.com/



https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processing

Last Time: Deep Learning



Fitting Deep Neural Networks

• Deep neural network model:

• Highly non-convex in the parameter W(1), W(2), W(3), w.

• We discussed a few tricks for training deep neural networks:
– Replacing sigmoids with alternatives like logistic loss.

– Careful selection of stochastic gradient step size (manual or automatic).

– Momentum.

• Today:
– Parameter initialization.

– What happened to the fundamental trade-off?



Parameter Initialization

• Parameter initialization is crucial:
– Can’t initialize weights in same layer to same value, or they will stay same.

– Can’t initialize weights too large, it will take too long to learn.

• Random initialization:
– Set bias variables to 0.

– Uniformly sample from standard normal, divided by 10,000 (0.00001*randn).

– Performing multiple initializations does not seem to be important.

• More recent:
– Use different initialization in each layer.

– Try to make variance the same across layers.

– Use sample from standard normal, divide by sqrt(2*nInputs).

• Another strategy is to use a deep unsupervised model to initialize.



Autoencoders

• Autoencoders are an unsupervised deep learning model:

– Use the inputs as the output of the neural network.

– If middle layer has only 2 units, can use this for visualization.

– Common to add noise to inputs (‘denoising’ autoencoder).
http://inspirehep.net/record/1252540/plots



Autoencoders

https://www.cs.toronto.edu/~hinton/science.pdf



Deep Learning and the Fundamental Trade-Off

• Neural networks are subject to the fundamental trade-off:

– As we increase the depth, training error decreases.

– As we increase the depth, training error no longer approximates test error.

• We want deep networks to model high non-linear data.

• But increasing the depth leads to overfitting.

• How could systems like GoogLeNet using ~30 layers?

– Many forms of regularization and keeping model complexity under control.



Standard Regularization

• We typically add our usual L2-regularizers:

• Called ‘weight decay’ in neural network literature.

• Could also use L1-regularization.

• ‘Hyper-parameter’ optimization:

– Try to optimize validation error in terms of λ1, λ2, λ3, λ4.

• Unlike linear models, this is rarely the only form of regularization. 



Early Stopping

• Even with regularization, stochastic gradient may still overfit.

• Regularization by ‘early stopping’:

– Monitor the validation error as we run stochastic gradient.

– Stop the algorithm if validation error starts increasing.

http://cs231n.github.io/neural-networks-3/



Dropout

• Dropout is a third form of regularization:

– On each iteration, randomly set some xi and zi to zero (often use 50%).

– Encourages distributed representation rather than using specific zi.

http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf



Convolutional Neural Networks

• Typically use multiple types of regularization:

– L2-regularization.

– Early stopping.

– Dropout.

• Often, still not enough to get deep models working.

• Deep models most used are convolutional neural networks:

– Place heavy restrictions on the elements of each W(m).

– Sizes of zi
(m) and functions ‘h’ change at each level.



Discrete Convolution

• Given ‘n’ values ‘x’ with indices j=1,2,…,n.

• We define weights ‘w’ with indices j=-m,-m+1,…-2,0,1,2,…,m-1,m.

• The discrete convolution ‘*’ of ‘x’ with ‘g’ at ‘i’ given by

• This is an inner product between ‘w’ and part of ‘x’:



Discrete Convolution Example

• Given ‘n’ values ‘x’ with indices j=1,2,…,n.

• We define weights ‘w’ with indices j=-m,-m+1,…-2,0,1,2,…,m-1,m.

• The discrete convolution ‘*’ of ‘x’ with ‘g’ at ‘i’ given by

• This is an inner product between ‘w’ and part of ‘x’:

• For example:



Discrete Convolution Example
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Discrete Convolution Example



Interpretation as Matrix Multiplication

• Convolution as inner product of with ‘w’ padded with zeros and ‘x’:

• Convolution for all ‘i’ is a matrix multiplication:

• It is a special case of a latent-factor models (up to boundary issue).



Boundary Issue

• The boundary issue:

• Various ways to deal with the ‘?’ marks:

– Don’t compute thse values.

– Assume that they are 0.

– ‘Replicate’ value at boundary.

– ‘Mirror’ values at boundary.

• xn+1 = xn-1, xn+2 = xn-2, etc.



Discrete Convolution Examples

• Convolutions can return the original signal:



Discrete Convolution Examples

• Convolutions can translate the signal:



Discrete Convolution Examples

• Convolutions can locally average the signal:



Discrete Convolution Examples

• Convolutions can smooth the signal:



Discrete Convolution Examples

• Convolutions can detect edges in the signal:



Discrete Convolution Examples

• Convolutions can detect oriented edges in the signal:



Image and Higher-Order Convolution

• Let ‘x’ be the pixel intensities in grayscale image of size ‘n’ by ‘n’.

– Indexed 1 through n.

• Let ‘w’ be a smaller image of size ‘2m+1’ by ‘2m+1’.

– Indexed –m through m.

• The two-dimensional convolution is given by:

• Higher-order convolutions are defined similarly.



Image Convolution Examples



Image Convolution Examples
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Image Convolution Examples
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Image Convolution Examples



Motivation for Convolutional Neural Networks

• Consider training neural networks on 256 by 256 images.

• Each zi in first layer has 65536 parameters (and 3x this for colour).

– We want to avoid this huge number (avoid storage and overfitting).

• Key idea: treat Wxi like a convolution (to make it smaller).

• Make it more like a normal image convolution:

– Each row of W only applies to part of xi.

– Use the same parameters between rows.

• Same idea applies to speech, images, and maybe language.



Convolutional Neural Networks

• Convolutional Neural Networks are neural with 3 layer types:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to results of several convolutions.



Convolutional Neural Networks

• Convolutional Neural Networks are neural with 3 layer types:

– Fully connected layer: usual neural network layer with unrestricted W.

– Convolutional layer: restrict W to results of several convolutions.

– Pooling layer: downsamples result of convolution to make results smaller.

• Usual choice is ‘max pooling’:



LeNet for Optical Character Recognition

http://blog.csdn.net/strint/article/details/44163869



AlexNet (ImageNet Winner in 2011)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



AlexNet (ImageNet Winner in 2011)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



GoogLeNet (2014 Winner)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf



Summary

• Parameter initialization is crucial to neural network performance.

• Autoencoders perform dimensionality reduction with neural nets.

• Regularization is crucial to neural net performance:

– Usual L2, early stopping, dropout.

• Convolutions are flexible class of signal/image transformations.

• Convolutional neural networks are key in deep learning success.

• Next time: what if the output is not continuous/binary?


