CPSC 340: Machine Learning and Data Mining

Deep Learning Fall 2015

Admin

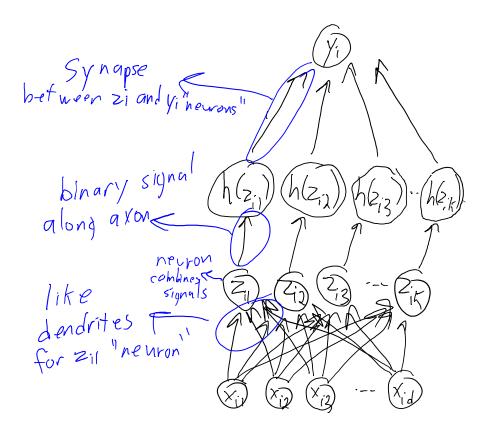
- Assignment 4 due now.
- Midterm
 - After class pick up remaining/remarked midterms.
 - Missing cheat sheet: did someone grab one when returning midterms?
- Office hours on Tuesday of next week will be in ICICS 146.
- Assignment 5:
 - First two questions put on Piazza Saturday, full assignment on Monday.
 - Material to review for Monday tutorials:
 - NMF for Eigenfaces with alternating minimization.
 - Collaborative filtering for recommender systems with regularized SVD.
 - The TAs will put together a 'tutorial summary' document.

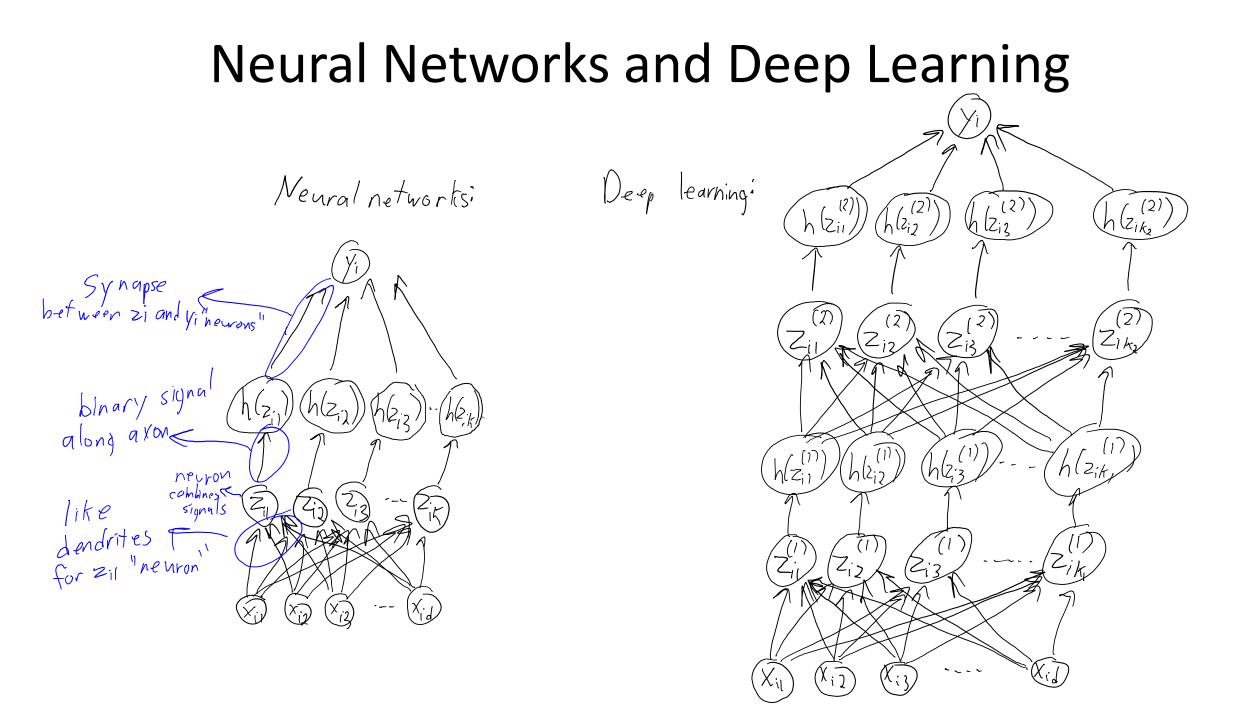
Last Time: Neural Networks

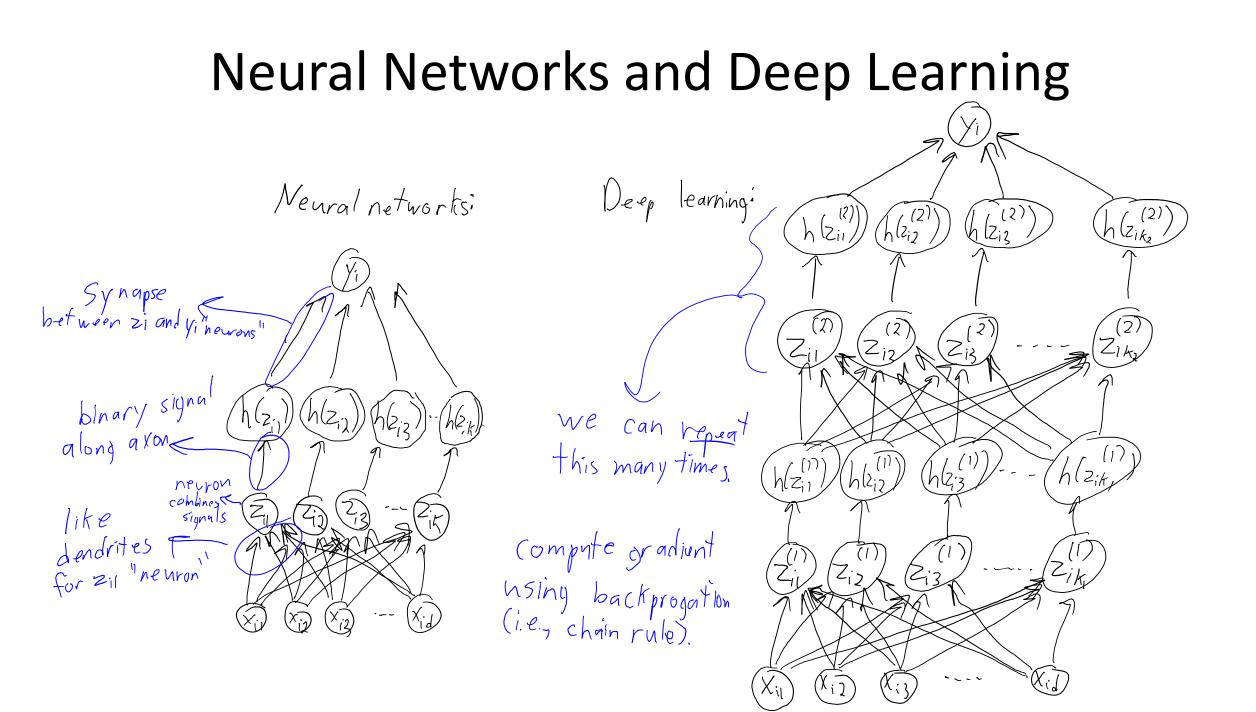
Hand-engineerobfeatures: Learn latent-factor model: Learn wand W together: Neural networksi wi wi wi Wrd \WK hy W3 $(\overline{\mathcal{Z}}_{i,1})$ $(\overline{\mathcal{Z}}_{i,3})$ $(\overline{\mathcal{Z}}_{i,k})$ Zi) (Zi) --- (Zi) $(h(z_{12})))$ Use latent representation as features: "I think this basis will work" W_{μ} Wrd wy wz wz Still a linear model. Ny W/ WKd $\left(\begin{array}{c} Z_{i} \end{array} \right) \left(\begin{array}{c} Z_{$ $(X; \overline{f})$ Requines domain Knowledgede Time - consuming. Good representation of Extra non-linear Xi might be bad for predicting y: transformation of Zi Values.

Neural Networks and Deep Learning

Neural networksi







Neural Networks and Deep Learning
Linear nodel:

$$\hat{y_{i}} = w^{T}x_{i}$$

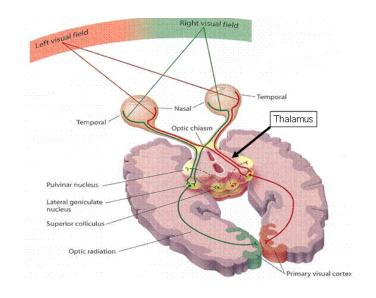
Single - layer neural network:
 $\hat{y_{i}} = w^{T}h(W_{x_{i}})$
"Deep learning:
 $\hat{y_{i}} = w^{T}h(W_{x_{i}})$
"Deep learning:
 $\hat{y_{i}} = w^{T}h(W_{x_{i}})$
 $we can report
 $\hat{y_{i}} = w^{T}h(W_{c_{i}})h(W_{c_{i}}x_{i}))$
 $\hat{y_{i}} = w^{T}h(W_{c_{i}})h(W_{c_{i}}x_{i}))$$

Digression: Bias Variables

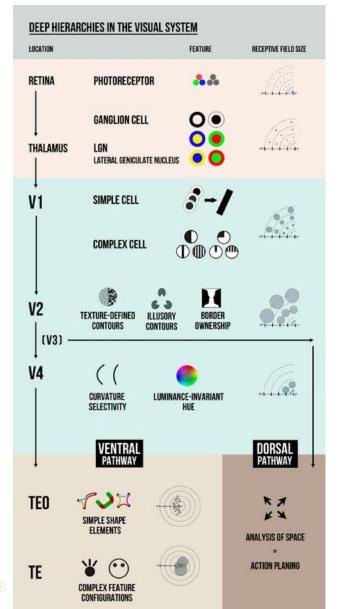
Linear model: don't need bias

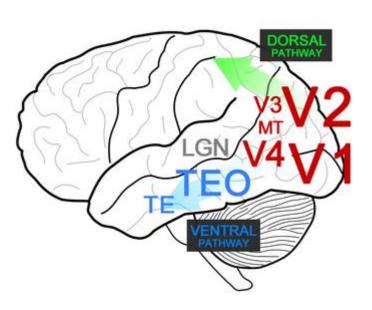
$$\hat{y_i} = w \vec{x_i}$$
 if x_i includes a variable
 $\hat{y_i} = w \vec{x_i}$ that is always 1.
Single-layer neural network:
 $\hat{y_i} = w^T h(W x_i) + \beta$ you can have an explicit bias β_3
 $\hat{y_i} = w^T h(W x_i) + \beta$ for if h is signoid then fix one
Column of W to zeroes.
 $\hat{y_i} = w^T h(W_{c2}) h(W_{c1}, x_i) + b_{c2}) + \beta$
 $\hat{y_i} = w^T h(W_{c2}) h(W_{c1}, x_i) + b_{c2}) + \beta$
 $\hat{y_i} = w^T h(W_{c2}) h(W_{c1}, x_i) + b_{c2}) + \beta$

Biological Motivation for Deep Learning

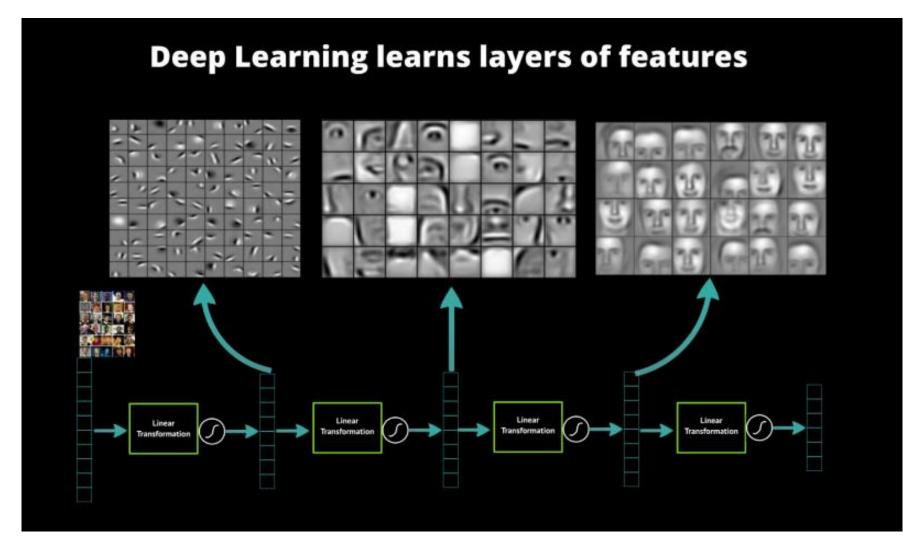


http://www.strokenetwork.org/newsletter/articles/vision.htm https://en.wikibooks.org/wiki/Sensory_Systems/Visual_Signal_Processir



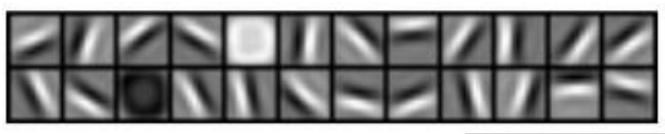


Cool Picture Motivation for Deep Learning

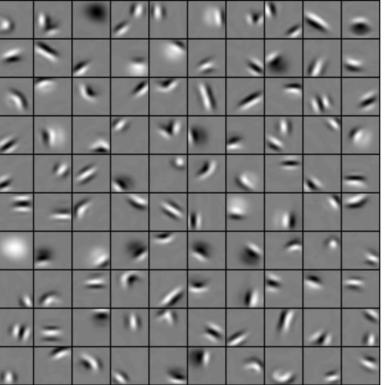


Cool Picture Motivation for Deep Learning

• First layer of z_i trained on 10 by 10 image patches:



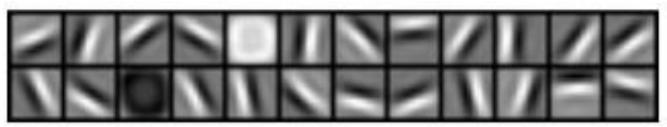
- Attempt to visualize second layer:
 - Corners, angles, surface boundaries?
- Models require many tricks to work.



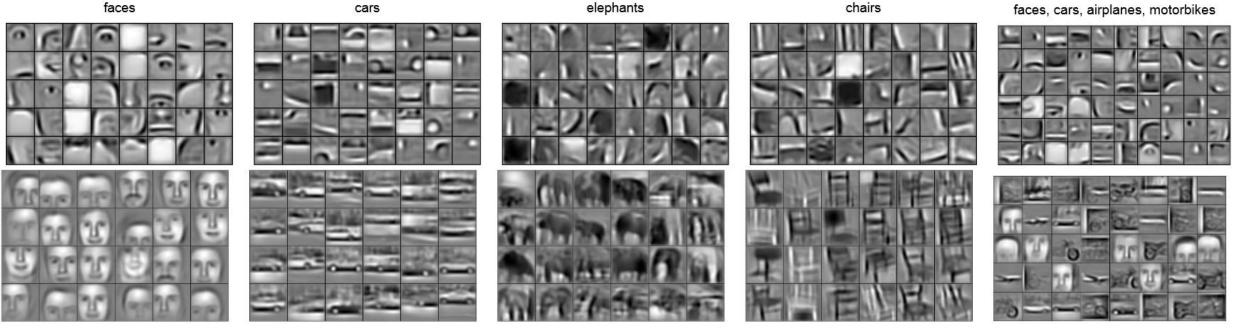
http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pd

Cool Picture Motivation for Deep Learning

• First layer of z_i trained on 10 by 10 image patches:



• Visualization of second and third layers trained on specific objects:



http://www.cs.toronto.edu/~rgrosse/icml09-cdbn.pd

Historical Notes

- 1950 and 1960s: Perceptrons!
 - Roughly: a linear classifier trained with stochastic gradient.
 - "the embryo of an electronic computer that [the Navy] expects will be able to walk, talk, see, write, reproduce itself and be conscious of its existence." New York Times (1958).
 - Quickly realized limitations of linear models.
- 1970 and 1980s: Connectionism and backpropagation!
 - Connected networks of simple units.
 - Use parallel computation and distributed representations.
 - Adding hidden layers (z_i) increases expressive power.
 - With 1 layer and enough sigmoid units, it is a universal approximator.
 - Success in optical character recognition (next lecture).

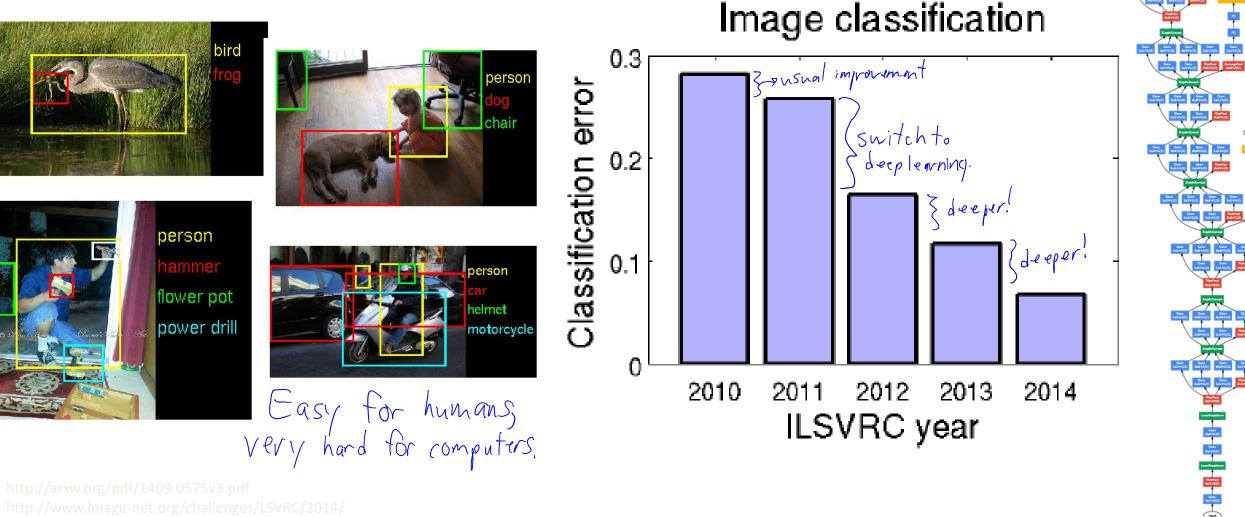
Historical Notes

- 1990s and early-2000s: drop in popularity.
 - It proved really difficult to get multi-layer models working robustly.
 - We obtained similar performance with simpler models:
 - Rise in popularity of logistic regression and SVMs with regularization and kernels.
- Late 2000s: rise in popularity of deep learning.
 - Canadian Institute For Advanced Research (CIFAR) NCAP program:
 - "Neural Computation and Adaptive Perception".
 - Led by Geoff Hinton, Yann LeCun, and Yoshua Bengio ("Canadian mafia").
 - Unsupervised successes: deep belief networks and autoencoders.
 - Could be used to initialize deep neural networks.

2010s: DEEP LEARNING!!!

- Bigger datasets, bigger models, parallel computing (GPUs/clusters).
 - And some tweaks to the models from the 1980s.
- Huge improvements in automatic speech recognition (beginning 2009).
 - All phones now have deep learning.
- Huge improvements in computer vision (beginning 2012).
 - This is now finding its way into products.
- Natural language understanding is next?
- Media hype:
 - "How many computers to identify a cat? 16,000", New York Times (2012).
 - "Why Facebook is teaching its machines to think like humans", Wired (2013).
 - "What Is 'deep learning' and why should businesses care?", Forbes (2013).
 - "Computer eyesight gets a lot more accurate" New York Times (2014).

ImageNet Challenge



ImageNet Challenge

- ImageNet organizer visited UBC this summer.
- "Besides huge dataset/model/cluster, what is the most important?"
 - 1. Image transformations (translation, rotation, scaling, lighting, etc.).
 - 2. Optimization.
- Why would optimization be so important?
 - Neural network objectives are highly non-convex (and worse with depth).
 - Optimization has huge influence on quality of model.

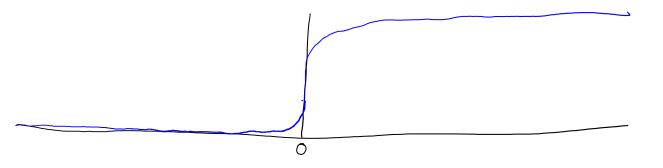
Deep Learning Tricks

- Standard training method is stochastic gradient (SG):
 - Getting SG to work for convex problems is tricky.
 - For deep neural networks, naïve methods do not work well.
- Are local mimima the problem?
 - There is some empirical/theoretical evidence that local minima are good.
 - But naïve stochastic gradient often does not even find local mimima.
 - Most time is spent near saddle points.
- We've discovered 'tricks' to train deep models:
 - 1. Different non-linear transformations.
 - 2. Step-size strategies.
 - 3. Regularization.
 - 4. Initialization.
 - 5. Special network structures.

Vanishing Gradient Problem

• Consider the sigmoid function:

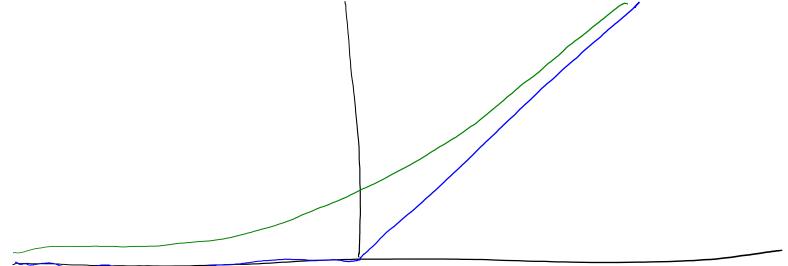
- Away from the origin, the gradient is nearly zero.
- The problem gets worse when you take the sigmoid of a sigmoid:



• In deep networks, many parameters will be 'stuck'.

Rectified Linear Units (ReLU)

• Instead of sigmoid, use a hinge loss (ReLU) or logistic loss:



- The gradient approaches zero or one, depending on the sign.
 - Gives sparse of activations.
 - Not really simulating binary signal, but could be simulating rate coding.

Setting the Step-Size

- Stochastic gradient is very sensitive to the step size in deep models.
- Bottou trick:
 - 1. Grab a small set of training examples.
 - 2. Do a binary search for a step size that works well on them.
 - 3. Use this step size for a long time (or slowly decrease it from there).
- Also common: manual 'babysitting' of step size.
- Momentum:
 - Add term that moves in previous direction: $W^{t+1} = W^{t} - \kappa_{t} \nabla f_{i}(w^{t}) + \beta_{t}(w^{t-w^{t-1}})$ Freep going in the old direction
- Bias step-size multiplier: use bigger step-size for the bias variables.

Summary

- Deep learning considers neural networks with many hidden layers.
- Biological motivation for these representations.
- Unprecedented performance on difficult pattern recognition tasks.
- Optimization is key to good performance, many engineering tricks.
- Next time:
 - Deep learning tricks underlying speech/vision systems.