CPSC 340:
Machine Learning and Data Mining

Neural Networks
Fall 2015



Admin

e Assignment 2 marks updated.
 Remaining midterms can be picked up after class.
* Assignment 4 due Friday.



Last Time: Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Non-parametric dimensionality reduction and visualization methods.
— Main idea: make distances between z, close to distances between x..
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* Multi-dimensional scaling (MDS):
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Last Time: Multi-Dimensional Scaling

* Multi-dimensional scaling (MDS):
— Non-parametric dimensionality reduction and visualization methods.

— Main idea: make distances between z, close to distances between XJ .
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Last Time: Multi-Dimensional Scaling

e General MDS formulation

Ao Z Z c(J,(x %), 4, (2:,2))
ZzeR™" =it
— d;: distance in high-dimensional space of ‘x’
— d,: distance in low-dimensional space of ‘z’
— g: penalizes differences in ‘d," and ‘d,".
* Solution is computed using gradient descent.

— To compute derivative, we need multivariate chain rule.



Univariate Chain Rule

* The univariate chain rule:
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Multivariate Chain Rule

e The multivariate chain rule:
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* Example: 3 /\/Ml /ii
sz\/\w@ — (T x
/ L@%CM:ZWK = -y -w ¢ ¥
/{j(z>:—/<\/“2>a
Vg(vv): A



Multivariate Chain Rule for MDS

e General MDS formulatlon
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* Using multivariate chain rule we have:
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ISOMAP

* |ISOMAP performs dimensionality reduction for data on a manifold:
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t-Distributed Stochastic Neighbour Embedding

* One key idea in t-SNE:

— Focus on small distances by allowing large variance in large distances.
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Sammon’s Map vs. ISOMAP vs. t-SNE
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Supervised Learning Roadmap

e Supervised Learning Parts 1 and 2:
— Assumed that we are given the features x..
— Could also use basis functions or kernels.

* Unsupervised Learning Part 2:
— We considered learning a representation z, based on features x..
— Can also be used for supervised: use z, as features.

* Supervised Learning Part 3:

— Learn features z, that are good for supervised learning.



Supervised Learning Roadmap
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Linear-Linear Model

* Natural choice: linear regression with linear basis:
N (
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* To train this model, we could solve:
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Introducing Non-Linearity

To increase flexibility, something needs to be non-linear.

Typical choice: transform z, by non-linear function ‘h’.
T
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Common choice for ‘h’: applying sigmoid function element-wise:
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This is called a ‘multi-layer perceptron’ or ‘neural network’.

[l



Why Sigmoid?

e Recall the 0-1 function:
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* Element-wise 0-1 function would give us a binary z.

— WXx; has a ‘concept’ encoded by each of its 2% possible signs.
e Sigmoid function is a smooth approximation to 0-1 function.




Why ‘Neural Network’?

Axon terminal

Dendrite

W | MNaode of
Ranvier

Cartoon of ‘typical’ neuron:

Myelin sheath
Nucleus

Neuron has many dendrites, which take ‘input’.
Neuron has a single axon, which sends ‘output’.

With the right input to dendrites:
— ‘Action potential’ along axon (like a binary signal):

Schwann cell
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Why ‘Neural Network’?
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‘Artificial’ Neural Nets vs. ‘Real’ Networks Nets

* Artificial neural network:
— X; IS measuring of the world.
— z, is internal representation of world.
— y. as output of neuron for classification/regression.

e Real neural networks are more complicated:

— Timing of action potentials seems to be important.
* ‘Rate coding’: frequency of action potentials simulates continuous output.

— Neural networks don’t reflect sparsity of action potentials.

— How much computation is done inside neuron?

— Brain is highly organized (e.g., substructures and cortical columns).
— Connection structure changes.

— Different types of neurotransmitters.




Artificial Neural Networks

With squared loss, our objective function is:
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Usual training procedure: stochastic gradient.
— Compute gradient of random example ‘i’, update ‘w’ and ‘W".

Computing the gradient is known as “backpropagation”.
Adding regularization to ‘w’ and/or ‘W’ is known as “weight decay”.



Backpropagation

* Consider the loss for a single example ﬁwow i of
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Backpropagation po
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Summary

Multivariate chain rule computes gradient of compositions.
Neural networks learn representation zi for supervised learning.
Sigmoid function avoids degeneracy by introducing non-linearity.
Biological motivation for binary representations.
Backpropagation computes neural network gradient via chain rule.

Next time:
— Learning representations of complicated concepts with “deep” learning.



