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Admin

e Assignment 3 due Friday:
— Submit as a single PDF file.



Features with Different Scales

e Consider features with different scales:

cog ()| Wilkml) | Fish () | Pasta (cups)_
0 250 0 1

1 250 200 1
0 0 0 0.5
2 250 150 0

e Should we convert to some standard ‘unit’?

— For decision trees, it doesn’t matter:
e (Milk > 100 mL) and (Milk > 0.1 L) will give the same rule.

— For k-nearest neighbours, it matters:
 Distance to (Milk =100, Eggs = 1) is different than distance to (Milk = 0.1, Eggs = 1).



Features with Different Scales

e Consider features with different scales:

cog ()| Wilkml) | Fish () | Pasta (cups)_
0 250 0 1

1 250 200 1
0 0 0 0.5
2 250 150 0

 Should we convert to some standard ‘unit’?
— For unregularized linear regression, it doesn’t matter:
* w;*(100 mL) gives the same model as w;*(0.1 L), w; will just be 1000 times smaller.

— With regularization, it does matter:

* Penalization |w;| means different things if features j" are on different scales.



Standardizing Features

* To put features on a similar scale, it is common to ‘standardize’:

— For each feature:
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 Compute mean and standard deviation:
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e Subtract mean and divide by standard deviation: o~ -
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— Change in ‘w;" have similar effect for any feature .

* Related issue is the ‘bias’ (y-intercept) variable:
— Often, we do not regularize the ‘bias’ (or use small A).
— Avoids penalizing global shift up or down.



Standardizing Target

* In regression, we also often standardize the targets y..
— Puts targets on the same standard scale as standardized features:
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* With standardized target, choosing no features predicts average y::
— Making features non-zero must then do better than this.

* Another common transformation of y is logarithm/exponent:
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— Makes sense for geometric/exponential processes.



Regression with Binary Features

* What is the effect of a binary feature on linear regression?

1975
1975
1980
1980

1
0
1
0

1.85
2.25
1.95
2.30

* Adding a bias w,, with this representation we have:
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* The ‘gender’ variable causes a shift up/down:
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Regression with Binary Features

 What if different genders have different slopes?

— Use a gender-specific slope.

Bias Year Bias Year
(gender 1) | (gender=1) | (gender=0) | (gender=0
0

1975 1 1975 0
1975 0 :7 0 0 1 1975
g 1980 1 1 1980 0 0
o 1980 0 0 0 1 1980
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Regression with Binary Features

* This trick just fits separate ‘local’ variable for each gender.
* To share information across genders, include a ‘global’ version.

Ser | Gender
1975 1 1975 1975 0
1975 0 —:7 1975 0 1975
1980 1 1980 1980 0
1980 0 1980 0 1980

* ‘Global’ year feature: influence of time on both genders. |
— E.g., improvements in technique. }9 obal //yf/‘
a9
* ‘Local’ year feature: gender-specific deviation from global trend, f

— E.g., different effects of performance-enhancing drugs. _ we ) o
g., al c P g drug %L_WO*%(W ) Wi(ye)



Regression with Binary Features

* Consider having 3 categories:




Regression with Binary Features

* Consider having 3 categories:
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Regression with Binary Features

* Consider having 3 categories:
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Regression with Binary Features
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* Consider having 3 categories:




* Consider having 3 categories:

Regression with Binary aﬁTrex
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Regression with Binary
W, + W X

* Consider having 3 categories: ¢
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Motivation: Identifying Important E-mails

How can we automatically identify ‘important” e-mails?

» Mark .. Issam, Ricky (10) Inbox A2, tutorials, marking = 10:41 am
COMPOSE
Holger, Jim (2) lisis Intro to Computer Science 10:20 am
Inbox (3) .
» Issam Laradiji inbox  Convergence rates forcu = 9:49 am
Starred
Important » sameh, Mark, sameh (3) Inbox  Graduation ProjectDema = 8:01 am
>ent Mall » Mark .. sara, Sara (11) Label propagation = 757am

Meafbs 143

We have a big collection of e-mails:
— Mark as ‘important’ if user takes some action based on them.

There might be some ‘universally’ important messages:
— “This is your mother, something terrible happened, give me a call ASAP”

But your “important” message may be unimportant to others.

— Similar for spam: “spam” for one user could be “not spam” for another.



The Big Global/Local Feature Table
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Predicting Importance of E-mail For New User

* Consider a new user:
— Start out with no information about them.
— Use global features to predict what is important to generic user.

* As we collect data about the user, we update local features:
— The local features let us give personalized prediction of importance.
— User might not agree with global importance, or have specialized interests.

* Classification with logistic regression (variant of linear regression):
— With large datasets, almost always better than naive Bayes.



Classification Using Regression?

e Usual approach to do classification with regression:
— Code y. as -1’ for one class and ‘+1’ for the other class.
— E.g., “+1’ means ‘important” and -1’ means ‘not important’.

* Fit a linear regression model:
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* To classify, take the sign (i.e., closer -1’ or ‘+1’?):
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Classification using Regression
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Classification Using Regression

e Can use our regression tricks (e.g., regularization) for classification.
* But, usual error functions do weird things:
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Classification Using Regression

* What went wrong?

— “Good” errors vs. “bad” errors.
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Classification Using Regression

* What went wrong?
— “Good” errors vs. “bad” errors.
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1 Comparing Loss Functions
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1 Comparing Loss Functions
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1 Comparing Loss Functions
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0-1 Loss Function

Using the 0-1 loss function:
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Can we solve this non-convex problem? U .lfi ;067
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If there exists a perfect classifier:
— Yes, ‘perceptron’ algorithm returns a solution.

If there does not exist a perfect classifier:

— Finding the ‘W’ minimizing 0-1 loss is a hard problem.



Convex Approximations to 0-1 Loss
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Convex Approximations to 0-1 Loss
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Convex Approximations to 0-1 Loss

Convex upper-bound on O- 1 loss is using hinge loss:
ﬂg?‘;\é Z,MW%O ijTng
Solution will be a perfect classifier, if one exists.
But it is non-differentiable.
We can smooth ‘max’ function with ‘log-sum-exp’:
VV\M%O \\/\/v)(i/\/!OC<@)(P *eyﬂ)( yWX>>

Using this approximation, we obtain Ioglstlc regression:
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Logistic Regression

* Fit (convex/smooth) logistic regression using gradient descent.
* You should add an L2- or L1-regularizer, too.

* Hinge loss and logistic regression are used EVERYWHERE!
— Training and testing are both fast.
— It is easy to understand what the weights ‘w;" mean.
— With high-dimensional features and regularization, often good test error.
— Otherwise, often good test error with RBF basis and regularization.
— Smoother predictions than random forests.
— Predictions have probabilistic interpretation.



Generative vs. Discriminative Models

In supervised learning part 1, we discussed generative models:
oy, L) e p I, ply)

— For example, naive Bayes.
The other type of probabilistic classifiers is discriminative models:
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— Logistic regression is equivalent to using:
|
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Theory and practice indicate: 00 o H@Y'O( ' %
— Generative models work better when we don’t have much data.
— Discriminative models work better when we have a lot of data.
— Usually, logistic regression works much better than naive Bayes.

Probabilistic perspective also suggests multi-class generalization (‘multinomial’ logistic)



Other Motivations for Logistic Regression

* \We motivated logistic loss as smooth/convex approximation to 0-1.
 We arrive at same model from several different perspectives:
— Maximum likelihood estimate with logistic likelihood:
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— Linear model of ‘log- odds
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— Linear parameterlzat|on of Bernoulli (‘coin flipping’) distribution.

— ‘Maximum entropy’ subject to ‘moment constraints’:

 Distribution that makes fewest assumptions, subject to fitting data.



Multinomial Logistic Regression

* For non-binary classification, we have weight ‘w_" for class ‘c’.
* Classify by maximizing inner product:

V= Vg Wj%%
C A
* Probabilistic model and corresponding error:
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* Binary logistic regression is special case where w, = 0. [reretie



Summary

Standardizing features puts features on the same scale.
Global vs. local features allows ‘personalized’ predictions.
Classification using regression works if done right.

0-1 loss is the ideal loss, but is non-smooth and non-convex.
Logistic regression uses a convex and smooth approximation to 0-1.

Next time:

— One more reason to use regularization, and how to find gold.



