CPSC 340: Machine Learning and Data Mining

Logistic Regression Fall 2015

Admin

- Assignment 3 due Friday:
 - Submit as a single PDF file.

Features with Different Scales

• Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - For decision trees, it doesn't matter:
 - (Milk > 100 mL) and (Milk > 0.1 L) will give the same rule.
 - For k-nearest neighbours, it matters:
 - Distance to (Milk = 100, Eggs = 1) is different than distance to (Milk = 0.1, Eggs = 1).

Features with Different Scales

• Consider features with different scales:

Egg (#)	Milk (mL)	Fish (g)	Pasta (cups)
0	250	0	1
1	250	200	1
0	0	0	0.5
2	250	150	0

- Should we convert to some standard 'unit'?
 - For unregularized linear regression, it doesn't matter:
 - $w_i^*(100 \text{ mL})$ gives the same model as $w_i^*(0.1 \text{ L})$, w_i will just be 1000 times smaller.
 - With regularization, it does matter:
 - Penalization $|w_i|$ means different things if features 'j' are on different scales.

Standardizing Features

- To put features on a similar scale, it is common to 'standardize':
 - For each feature:
 - Compute mean and standard deviation:

• Subtract mean and divide by standard deviation:

- Change in ' w_i ' have similar effect for any feature 'j'.
- Related issue is the 'bias' (y-intercept) variable:
 - Often, we do not regularize the 'bias' (or use small λ).
 - Avoids penalizing global shift up or down.

 $M_{j} = \frac{1}{h} \sum_{i=1}^{n} X_{i}$ $G_{j} = \left(\frac{1}{h} \sum_{i=1}^{n} (X_{ij} - M_{j})^{2}\right)^{2}$

Standardizing Target

- In regression, we also often standardize the targets y_i.
 - Puts targets on the same standard scale as standardized features:

$$V_{x} \in \frac{Y_{x} - M_{y}}{Q_{y}}$$

• With standardized target, choosing no features predicts average y_i:

 $y_{i} \in log(y_{i})$ $y_{i} \in oxp(Ty)$

- Making features non-zero must then do better than this.
- Another common transformation of y_i is logarithm/exponent:

Makes sense for geometric/exponential processes.

• What is the effect of a binary feature on linear regression?

Year	Gender	Height
1975	1	1.85
1975	0	2.25
1980	1	1.95
1980	0	2.30

http://www.at-a-lanta.nl/weia/Progressie.html http://www.wikiwand.com/it/Udo_Beyer http://women-s-rights.blogspot.ca/

- What if different genders have different slopes?
 - Use a gender-specific slope.

		Bias	Year	Bias	Year	
Year	Gender			(gender = 1)	(gender = 0)	(gender = 0)
1975	1	,	1	1975	0	0
1975	0	\equiv	0	0	1	1975
1980	1	·	1	1980	0	0
1980	0		0	0	1	1980

- This trick just fits separate 'local' variable for each gender.
- To share information across genders, include a 'global' version.

Year	Gender		Year	Year (if gender = 1)	Year (if gender = 0)
1975	1	<u> </u>	1975	1975	0
1975	0		1975	0	1975
1980	1		1980	1980	0
1980	0		1980	0	1980

- 'Global' year feature: influence of time on both genders.
- E.g., improvements in technique. 'Local' year feature: gender-specific deviation from global trend. E.g., different effects of performance-enhancing drugs. $y_{j} = W_{0} + W_{g}(y_{ear}) + W_{k}(y_{ear})$

• Consider having 3 categories:

Regression with Binary Features $W_0 + W_1 x$

- Consider having 3 categories:
- $W_{\rho} + W_{\rho}, X$ Model 4: Jocal bias for category local. WO slope $\gamma = W_{\ell} + W_{\ell} \times$ $W_{\rho}^{+}W_{r}X$

Motivation: Identifying Important E-mails

• How can we automatically identify 'important' e-mails?

COMPOSE		Mark Issam, Ricky (10)	Inbox A2, tutorials, marking @ 1	10:41 am
		Holger, Jim (2)	lists Intro to Computer Science	10:20 am
Inbox (3) Starred	- 🖈 🕨	Issam Laradji	Inbox Convergence rates for cu @	9:49 am
Important	🗆 📩 💌	sameh, Mark, sameh (3)	Inbox Graduation Project Dema C	8:01 am
Sent Mail		Mark sara, Sara (11)	Label propagation	7:57 am

- We have a big collection of e-mails:
 - Mark as 'important' if user takes some action based on them.
- There might be some 'universally' important messages:
 - "This is your mother, something terrible happened, give me a call ASAP."
- But your "important" message may be unimportant to others.
 - Similar for spam: "spam" for one user could be "not spam" for another.

Predicting Importance of E-mail For New User

- Consider a new user:
 - Start out with no information about them.
 - Use global features to predict what is important to generic user.
- As we collect data about the user, we update local features:
 - The local features let us give *personalized prediction* of importance.
 - User might not agree with global importance, or have specialized interests.
- Classification with logistic regression (variant of linear regression):
 With large datasets, almost always better than naïve Bayes.

Classification Using Regression?

- Usual approach to do classification with regression:
 - Code y_i as '-1' for one class and '+1' for the other class.
 - E.g., '+1' means 'important' and '-1' means 'not important'.
- Fit a linear regression model:

$$\begin{split} & \bigwedge_{\lambda} = W_{1} X_{\lambda 1} + W_{\lambda} X_{\lambda 2} + \dots + W_{d} X_{\lambda d} \\ & = W^{T} X_{\lambda} \\ & = W^{T} X_{\lambda} \end{split}$$

• To classify, take the sign (i.e., closer '-1' or '+1'?):

$$\gamma = sign(w^{\intercal}\chi).$$

Classification Using Regression

- Can use our regression tricks (e.g., regularization) for classification.
- But, usual error functions do weird things:

Classification Using Regression

• What went wrong?

Classification Using Regression

• What went wrong?

0-1 Loss Function

number o

- Using the 0-1 loss function: •
- $\begin{array}{c} \text{or gmin} \\ \text{ar gmin} \\ \text{were} \\ i = 1 \end{array} \stackrel{f}{=} I \left[y_i \neq \text{sign}(w \cdot x_i) \right] \\ \text{y}^{\text{i}} \text{Indicator}^{\text{i}} \left[\text{function}: I(expr) = \int_{i = 1}^{i} \text{firstrue} \\ \text{or freepr} \\ \text{or freepr} \\ \text{is true} \\ \text{or freepr} \\ \text{or freepr} \\ \text{is true} \\ \text{or freepr} \\ \text{or freepr$ • Can we solve this **non-convex** problem?
- If there exists a perfect classifier:
 - Yes, 'perceptron' algorithm returns a solution.
- If there does not exist a perfect classifier:
 - Finding the 'w' minimizing 0-1 loss is a hard problem.

Convex Approximations to 0-1 Loss

• Convex upper-bound on 0-1 loss is using hinge loss:

$$\frac{n}{x \in \mathbb{R}^d} \sum_{i=1}^n \max\{2O_i | -y_i \leq x_i\}$$

- Solution will be a perfect classifier, if one exists.
- But it is non-differentiable.
- We can smooth 'max' function with 'log-sum-exp': $\max \{0_{j} \mid -\gamma_{i} \le X_{j} \} \approx \log (exp(0) + exp(-\gamma_{i} \le X_{i}))$
- Using this approximation, we obtain logistic regression:

$$\frac{\operatorname{argmin}}{\operatorname{werk}} \sum_{i=1}^{n} \log(1 + \exp(-y_i \cdot w_i \cdot x_i))$$

Logistic Regression

- Fit (convex/smooth) logistic regression using gradient descent.
- You should add an L2- or L1-regularizer, too.
- Hinge loss and logistic regression are used EVERYWHERE!
 - Training and testing are both fast.
 - It is easy to understand what the weights ' w_i ' mean.
 - With high-dimensional features and regularization, often good test error.
 - Otherwise, often good test error with RBF basis and regularization.
 - Smoother predictions than random forests.
 - Predictions have probabilistic interpretation.

Generative vs. Discriminative Models

• In supervised learning part 1, we discussed generative models:

$$\rho(y_j|_{x_i}) \propto \rho(x_j|_{y_j}) \rho(y_j)$$

- For example, naïve Bayes.
- The other type of probabilistic classifiers is discriminative models:

- Logistic regression is equivalent to using:

$$p(y_i \mid x_j) = \frac{1}{1 + exp(-y_i w^T x_j)}$$

- Theory and practice indicate:
 - Generative models work better when we don't have much data.
 - Discriminative models work better when we have a lot of data.
 - Usually, logistic regression works much better than naïve Bayes.
- Probabilistic perspective also suggests multi-class generalization ('multinomial' logistic)

Other Motivations for Logistic Regression

- We motivated logistic loss as smooth/convex approximation to 0-1.
- We arrive at same model from several different perspectives:
 - Maximum likelihood estimate with logistic likelihood:

$$P(y_{n}|x_{n}) = \frac{1}{1 + e \times p(-y_{n} \cdot \sqrt{x_{n}})}$$

Linear model of

$$= \underbrace{\prod_{1+exp(-y_{n},\sqrt{x_{n}})}^{I}}_{1+exp(-y_{n},\sqrt{x_{n}})} \qquad (\log \operatorname{arithm} \operatorname{gives} \operatorname{logistic} 1_{0.55}) \\ \operatorname{maximizing} p(y_{i} | x_{i}) \subset \operatorname{minizing} \log p(y_{i} | x_{i})) \\ \operatorname{of} (\log \operatorname{odds':}_{p(y_{i})}^{I} = | x_{i}) = \sqrt{x_{i}} \\ \operatorname{og} \left(\frac{p(y_{i}) = | x_{i})}{p(y_{i}) = -| x_{i}} \right) = \sqrt{x_{i}}$$

- Linear parameterization of Bernoulli ('coin flipping') distribution.
- 'Maximum entropy' subject to 'moment constraints':
 - Distribution that makes fewest assumptions, subject to fitting data.

Multinomial Logistic Regression

- For non-binary classification, we have weight w_c' for class c'.
- Classify by maximizing inner product:

$$y_{n} = mg x \begin{cases} w_{c}^{T} x_{c} \\ z \end{cases}$$

• Probabilistic model and corresponding error:

Summary

- Standardizing features puts features on the same scale.
- Global vs. local features allows 'personalized' predictions.
- Classification using regression works if done right.
- 0-1 loss is the ideal loss, but is non-smooth and non-convex.
- Logistic regression uses a convex and smooth approximation to 0-1.
- Next time:
 - One more reason to use regularization, and how to find gold.