CPSC 340:
Machine Learning and Data Mining

Feature Selection
Fall 2015



Norms in 1-Dimension

* We can view absolute value, | x|, as ‘size’ or ‘length’ of a number:

* |t satisfies three intuitive properties of ‘length’:
1. Only ‘0’ has a ‘length’ of zero.
2. If you multiply ‘x” by constant ‘a’, length gets multiplied by |a].
3. Length of ‘x+y’ is not more than length of X’ plus length of ‘y’.

“Triangle inequality” S U LD
e 0



Norms in 2-Dimensions

In 1-dimension, only the absolute value satisfies the 3 properties.

In 2-dimensions, there is no unique function satisfying them.

We call any function satisfying them a ‘norm’:

— These are measures of ‘length’ in 2-dimensions.

Three most common examples:
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Norms in d-Dimensions

 These norms also satisfy the 3 properties in d-dimensions:
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Summary of Last Lecture

Error function (L2, L1, Huber) affects how errors are ‘weighted’.
L1 and Lee error functions are non-differentiable:

— Finding ‘w’ minimizing these errors is harder.
We can approximate these with differentiable functions:
— L1 can be approximated with Huber.

— Loo can be approximated with log-sum-exp.
Gradient descent finds local minimum of differentiable function.
For convex functions, any local minimum is a global minimum.

— Non-convex minimization is very hard, but some people do it anyways.
— Starting from different initializations can help!



Motivation: Allergy Testing with Regression

* Recall the food allergy example:

g | Wil | Fish | Wheat | helsh | Peanuts | ..
0 07 O 0.3 0 0 — 1
03 07 0 06 0 0.01 ) |
0 0 0 0.8 0 0 — 0
03 07 12 0 0.10 0.01 > 1



Motivation: Allergy Testing with Regression

* |nstead of sick/not-sick, consider measuring immunoglobin levels:

Egg | Milk | Fish | Wheat | Shellfish | Peanuts | ... | IgE
0 07 O 0.3 0 0 — 700
03 07 0 06 0 0.01 ) 740
0 0 0 0.8 0 0 — 50
03 07 12 0 0.10  0.01 mmmm—) 950

* Now formulated as a regression problem.

* Instead of prediction, want to find out which foods cause high IgE.

— ‘Feature selection’ (similar to finding association rules).
— Similar to choosing degree in polynomial basis, but there is no ordering.



Feature Selection

: N
e General feature selection problem: fe «Ture J

— Given our usual X" and ‘y’: —

Y =

J”“Odm}nq €XWV\/)/€
— We think some features/columns of ‘X’ are irrelevant to predict ‘y’.
e QOutput could be: | |

| 1
— Set of ‘relevant’ features. ( il K ) jwm/\[)d A cream )
— A model that uses the ‘best’ set of features.

* One of most important problems in ML/statistics, but very very messy.
— We focus on linear regression, but ideas apply for classification/non-linear.



Choose the Largest Regression Weights?

Simple/common approach to feature selection:

1. Fit least squares weights ‘w’ using all the features.

2. Choose the features |’ with biggest weights, [w;].
Intuitive: big |w;| means x;" has big affect on “y;"

— E.g., we expect ‘w;” for ‘milk’ feature to be high: high milk => high IgE.
Only makes sense if feature have independent effects:

— Otherwise, systematically misses relevant variables.

Example:

— You are allergic to ‘lactose’ and to a protein in ‘milk’.

— But you only ever see ‘lactose’ and ‘milk’ together.

— Linear regression could give big weight to ‘milk’ and smaller weight to ‘lactose’.
— Or could be reversed, or both could be medium-sized.



Choose the Largest Correlations?

Another simple/common approach to feature selection:

— For each feature ‘J, compute similarity between all ’x;” and “y;".
e E.g., correlation, distance, mutual information, etc.

— Return top ‘k’ features, or all features above some threshold.
Not sensitive to milk-lactose issue:

— Uses independent statistic on each variable.

— Finds that ‘milk” and ‘lactose’ are relevant.

Sensitive to the Taco Tuesday issue:

— You could find that ‘Tuesday’ is very correlated with IgE level.

— But only because you go to Taco Tuesdays:
* If you knew the value of ‘Taco’, the variable ‘Tuesday’ is irrelevant.

This approach systematically includes irrelevant variables.



Philosophical Digression

* |Is ‘“Tuesday’ actually a relevant variable?
— If you don’t know the value of ‘taco’, it is relevant for prediction.
— So ‘relevance’ is relative to what other information is available.

* A second issue with this example is causality:
— ‘Tuesday’ does not directly cause an increase in IgE, so it is not relevant.

— But if you don’t have an ‘intervention’ like ‘forced not to go to taco Tuesdays’,
you may never be able to determine this.

— Similarly, ‘histamine’ is relevant for predicting IgE, but IgE causes histamine.

* If the effect size is very small, is the variable relevant?
— Presumably, any variable could give some information about y..
— We are probably only interested in non-trivial effect sizes.



Common Approaches to Feature Selection

3 main approaches to feature selection:
1. Hypothesis testing.
2. Search and score.
3. L1-Regularization.

* None is ideal, but good to know advantages/disadvantages.

1. Hypothesis testing or ‘constraint-based’ approaches:
— Fixes ‘largest correlation” method to address Taco Tuesday.
— Assumes we have test of conditional dependence:

e Usually, ‘partial’ correlation or ‘conditional’ mutual information.



Hypothesis Testing in Action

» Testing whether ‘taco’ is reIevan’VQ <99 nigh cosn Similerity

— Test if ‘taco’ and ‘IgE’ are dependent:

* Yes, they are.

— Next test if ‘taco’ and ‘IgE’ are dependent, given ‘Tuesday’:

* Yes, they still are: return ‘relevant’.

* Testing whether ‘Tuesday’ is relevant:
— Test if ‘Tuesday’ and ‘IgE’ are dependent:
* Yes, they are.

— Next test if ‘Tuesday’ and IgE’ are dependent, given ‘taco’:

* No, they are not: return ‘not relevant’.



Feature Selection Approach 1: Hypothesis Testing

e Constraint-based determination of whether ‘j’ is relevant:
1. Start with an empty ‘conditioning set’ ‘S'.
2. Test whether x;” and ‘y;" are dependent.

* |f not, return ‘not relevant’.
3. Choose some variable and add it to ‘S'.
4. Test whether ;" and yi" are conditionally dependent given °S’.

* |f not, return ‘not relevant’.
* Otherwise, return to step 3 until we have added all variables to ‘S’.

5. |If all variables are in ‘S’, return ‘relevant’.



Hypothesis Testing Issues

* Advantages:
— Deals with Taco Tuesday issue.
— Algorithm can explain decisions.
— Allows fancy non-parametric measures of dependence.

* Disadvantage:

— Usual warning about testing multiple hypotheses. )
wlk ;mq@/m% of Ly

— You could be ‘dependent’ but with trivial effect size. | .
— Does not deal with milk-lactose |ssue/_/ 9”‘/% lnc in .
* Could say they are both irrelevant. \d lac Tost /”C/”/’W? el ol Lyf

' s
* ‘Faithfulness’” assumption: pretend things like this can’t happen. Grienn

— Hard to determine optimal order that you add variables to ‘S'.



Feature Selection Approach 2: Search and Score

 Two components behind search and score methods:

— Score: function that says how ‘good’ a set of variables are. |
L el

— Search: find set of variables with a high score. o M
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1. Validation/cross-validation error: whart & inrelevan .
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* Balance training error against number of non-zero features.
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LO-Norm

* The LO “norm” is the number of non-zero values. () == 0)
— Not actually a norm: violates 2 of 3 properties. i9“0V€ X
* LO-norm regularization for features selection: (/Yf
Argin D ||y =Xl + Allwlly, 5o bs==0) s
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* Balances between training error and number of features. [movinc
— Different values of A give the common feature selection scores: ealury /Juv

» Akaike information criterion (AIC).
e Bayesian information criterion (BIC).
* Both recover correct features under strong assumptions.



Search and Score Issues

* Advantages:
— Deals with Taco Tuesday issue.
— Takes into account size of the effect.

* Disadvantages:
— Difficult to define ‘correct’ score:

* Cross-validation often selects too many.
e LO-norm selects too few/many depending on A.

— Only partially deals with milk-lactose issue:
* LO-norm will only pick one of them.
* Cross-validation could pick one or both.

— Under most scores, it’s hard to find optimal features.



Practical Search Methods

e Usual search procedures:
1. Exhaustive search:

e Returns optimal solution, but only feasible if ‘d” is very small.

2. Forward selection:
e Start with no features, add the one that increase the score the most, repeat.
e Sub-optimal, but often works well.

3. Backward selection:

e  Start with all features, remove the one that decreases the score the most, repeat.

4. Stagewise: combine forward/backward selection.



Feature Selection Approach 3:
L1-Regularization (LASSO)

Consider regularizing by the L1-norm:

a\/\r/@/ﬁ”l “/ %V\/ “{//)5“\/‘/

Like L2-norm, it’s convex and has many magical properties.
Like LO-norm, it encourages elements of ‘w’ to be exactly zero.

We call a vector with many elements set to 0 a sparse vector.

We can simultaneously regularized and select features.
— And it’s very fast, too.



Sparsity and Least Squares

* Consider 1D least squares objective:
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* This is a convex 1D quadratic function of ‘w’ (i.e., a parabola):
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* This variable does not look relevant (minimum is close to 0).
— If it’s really irrelevant, minimum will move to 0 as ‘n’ goes to infinity.

— But for finite ‘n’, minimum of parabola is unlikely to be exactly zero.




Sparsity and LO-Regularization

* Consider 1D LO-regularized least squares objectlve
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e LO-regularization minimum is often exactly at the ‘discontinuity’ at O:

— |t sets the feature to exactly O, removing it from the model.
— But this is not a convex function.




Sparsity and L2-Regularization

* Consider 1D L2-regularized Ieast squares objective:
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e |2-regularization moves it a bit closer to zero.
— But there is nothing special about being ‘exactly’ zero.
— L2-regularization will still tend to select this feature.



Sparsity and L1-Regularization

* Consider 1D L1-regu|a:in(ed Ieast squares objec/’)cive' gi iﬂ [/f W;)ZHW 0
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* This is a convex piecwise- quadratlc function of ‘W’ with ‘kink’ at 0: jD(W)
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e L1- regularlzatlon minimum is often exactly at the ‘kink’ at O:
— |t sets the feature to exactly O, removing it from the model.
— Big A means kink is ‘steep’. Small A makes 0 unlikely to be minimum.




L2-Regularization vs. L1-Regularization

e L2-Regularization: e L1-Regularization:
— Insensitive to changes in data. — Insensitive to changes in data.
— Significantly-decreased variance: — Significantly-decreased variance:
* Lower test error. * Lower test error.
— Closed-form solution. — Requires iterative solver.
— Solution is unique. — Solution is not unique.
— All ‘w’ tend to be non-zero. — Many ‘w’ tend to be zero.
— Can learn with linear number of — Can learn with exponential
irrelevant features. number of irrelevant features.

e E.g., O(d) relevant features. e E.g., O(log(d)) relevant features.



L1-Regularization Issues

* Advantages:
— Deals with Taco Tuesday issue.
— Takes into account effect size.
— Convex (fast with specialized methods).

% . 0 0
— Performs regularization at the same time.

* Disadvantages:
— Tends to give false positives (selects too many variables).

— Only partially deals with milk-lactose issue:
* Could pick one or both.



Extensions of L1-Regularization

e “Elastic net”:
— Use L2-regularization and L1-regularization:

— Nice properties of L1-regularization plus:
e Solution is unique.
» Addresses milk-lactose issue (selects both).

* “Bolasso”:
— Run L1-regularization on boostrap samples.
— Take features that are non-zero in all samples.
— Much less sensitive to false positives.

 There are many non-convex regularizers:
— Less prone to false positives.
— But computing global minimum is hard.



Summary

Norms are a way to measure ‘size’ or ‘length’ in higher dimensions.
Feature selection is task of choosing the relevant features.
Obvious approaches have systematic problems.

Hypothesis testing: find set ‘'S’ that makes yi and xij independent.
Search and score: find features that optimize some score.
L1-regularization: simultaneously regularize and select features.

Next time:
— Finding ‘important’ e-mails, and beating naive Bayes on spam filtering.



