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Admin

• Can you see Assignment 1 grades on UBC connect?

– Auditors, don’t worry about it.

• You should already be working on Assignment 3.

• Notes regarding midterm:

– This lecture is the last topic that the midterm will cover.

– Practice midterm coming soon.

– Questions will be similar to assignment questions.

– Questions will only cover topics covered in Assignments 1-3.



RBF Basis with L2-Regularization

• Use {RBF basis, L2-Regularization} and Cross-validation for {𝜎, λ}

– Non-parametric basis, magic of regularization, and tuning for test error!

– Can add bias or linear/poly basis to do better away from data.

– Like KNN, it’s expensive at test time.
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Least Squares with Outliers

• Least squares is very sensitive to outliers.



Robust Regression with Outliers

• Absolute error is more robust to outliers:



Regression with the L1-Norm

• Unfortunately, minimizing the absolute error is harder:

– We can’t take the gradient at zero.

– Generally, harder to minimize non-smooth than smooth functions.

– Could solve as ‘linear program’, but harder than ‘linear system’.



Smooth Approximations to the L1-Norm

• There are differentiable approximations to absolute value.

• For example, the Huber loss:

• No closed-form solution for 𝛻 f(x) = 0, but can use gradient 
descent.



Gradient Descent

• Gradient descent is based on a simple observation:

– Give parameters ‘w0’, vector direction of largest decrease is −𝛻 f(w0)).
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Gradient Descent

• Gradient descent is an iterative algorithm:

– We start with some initial guess, w0.

– Generate new guess by moving in the negative gradient direction:

(The scalar 𝛼0 is the `step size’.)

– Repeat to successively refine the guess:

– Stop if not making progress or 



Gradient Descent

• If 𝛼𝑡 is small enough and 𝛻𝑓 𝑤𝑘 ≠ 0,  guaranteed to decrease ‘f’:

• Under weak conditions, procedure converges to a local minimum.

• Least squares via normal equations vs. gradient descent:

– Normal equations cost O(nd2 + d3).

– Gradient descent costs O(ndt) to run for ‘t’ iterations.

– If solution is good enough after t iterations, gradient descent can be faster:
• This is true if (t < d) and (t < d2/n), gradient descent is often better when d is very large.

• Nesterov’s and Newton’s methods are variants with fewer iterations.

– For special case of L2-regularized least squares, can also use ‘conjugate’ gradient.



Gradient Descent in 2D



Convex Functions

• Is finding a local minimum good enough?

– For least squares and Huber loss: yes, because they are convex.

• A function is convex if:

– Domain is a convex set, and function is never above ‘chord’.

– “Curved upwards everywhere”.

• All local minima of convex functions are also global minima:



General Convex Error Functions

• Consider a general linear regression objective:

• If the ‘error’ function ‘g’ is convex, then we can show ‘f’ is convex.

• Square function, absolute value, Huber loss:



Very Robust Regression

• We could also consider non-convex or concave error functions:

• These can be very robust:

– Eventually ‘give up’ on trying to make large errors smaller.

• With non-convex errors, finding global minimum is hard.

• Absolute value is the most robust convex error function.



Motivation for Considering Worst Case



‘Brittle’ Regression

• What if you really care about getting the outliers right?

– You want best performance on worst training example.

– For example, if in worst case the plane can crash.

• In this case you can use something like the infinity-norm:

• Very sensitive to outliers (brittle), but worst case will be better.



Log-Sum-Exp Function

• As with the L1-norm, the L∞-norm is convex but non-smooth.

– True for all norms (recall that we always square the L2-norm).

• Log-Sum-Exp function is a smooth approximation to max function:

• Intuition: 

– ∑𝑖 exp 𝑥𝑖 ≈ max
𝑖

exp(𝑥𝑖), largest element is magnified exponentially.

– Recall that log(exp(xi)) = xi.

• To use for brittle regression:



Log-Sum-Exp Trick

• Numerical problem is that exp(xi) might overflow.

– For example, exp(100) has more than 40 digits.

• Log-sum-exp ‘trick’:



Summary

• Robust regression using L1-norm/Huber is less sensitive to outliers.

• Gradient descent finds local minimum of differentiable function.

• Convex functions do not have non-global local minima.

• Log-Sum-Exp function: smooth approximation to maximum.

• Next time:

– What if we don’t know which features are relevant?


