CPSC 340:
Machine Learning and Data Mining

Robust Regression
Fall 2015

Admin

* Can you see Assignment 1 grades on UBC connect?
— Auditors, don’t worry about it.

* You should already be working on Assignment 3.

* Notes regarding midterm:
— This lecture is the last topic that the midterm will cover.
— Practice midterm coming soon.
— Questions will be similar to assignment questions.
— Questions will only cover topics covered in Assignments 1-3.

RBF Basis with L2-Regularization

* Use {RBF basis, L2-Regularization} and Cross-validation for {g, A}

— Non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 2.000000) __RBF Basis (sigma = 0.500000)

RBF Basis (sigma = 0.125000)

; 10
T Trai
Test
Test | - 0.5t '_.,? D5 \ '
' y Andy)
4
// 0 , 0 7[/ o
7
‘ da YA/
/ .
- 5 0o / 0.5 I'| ' il
/ /'*‘ \ 2 | [l 3
AN L A% ’;‘,}} | 1. |'|I I I| &
| | 4| Ay / | | | T | 4
o // \\ /1’ 1 / \) ¥ -1 | ¥ |II | |I [
) ; / A : ' \s | [/
?{f.' \! _'?' . ;_'_/ ‘5\’ / le—q__ J,;‘ \]II . | | [1 . /
15) < b : 1571 / ! / 1 A5} Iy A | []
A \ 2 L \ Sy N
- . ' : f :
o N o \. T Al
Y Bk ~— : 2 e \ : Y ot i |
L oA ' IhYa
H A =N
L A L 'l L L A L A L J _25 L L L L A 4 L 4 _2 5 A i A
3 2 1 0 1 2 3 4 5 5 4 3 2 1 0 1 2 3 4 5 5 4 3 7 1 0 1 2

— Can add bias or linear/poly basis to do better away from data.
— Like KNN, it’s expensive at test time.

RBF Basis with L2-Regularization

05| u

o) & b=

L i
sk ', L] I: 1-!-

2%

RBF Basis with L2-Regularization

0.5 o
0}
05}
Ak * 2
g5k *:'t ' '..,: o

.E,._:.‘-i.l | & . E

|EE,

Least Squares with Outliers

* Least squares is very sensitive to outliers.

A)oéﬂ\\/\xf(Erians’ gwm(f Corppe s

X\X‘X\M ! “m M'“wl”\ g\ j\m\\\\\m

Robust Regression with Outlier

e Absolute error is more robust to outliers:

A%f&}\/\% 2r(org gc\\/\m\(

Creaf5

@ﬂ\ﬁqwﬂv\ /(y“)(u///” \(L/\Mdﬂm\\.' /)2 Uﬁ = é /2/;/.

w R

Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:
— We can’t take the gradient at zero. \2\

2

|

— Generally, harder to minimize non-smooth than smooth functions.
— Could solve as ‘linear program’, but harder than ‘linear system’.

Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.
* For example, the Huber loss:

) V\ - —/
(Y\VC(LM@\A(J 2,“7” Wy,

ﬁt Crvor [m/mg
O [nearoncTion

Ry
%(z\? éz 7 - /
_ ¢ 7 oTharmis g S >
)

* No closed-form solution for V f(x) = 0, but can use gradient

descent. o . 5|
‘F(WW t%_i >(%k (\ : ~w }((kv Z ‘COF Z
W }\: % / 2> % gglgy\(2,> (77%\(/V\/

Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).

INOW
2
/@ N
lope { 03 15 \/\€(%{7 L) nd \N'W UPC 7V(\A/>

sf() 10{[(\\05# CK{W@”@C By ﬂ(v@hgq\ 0

Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).

Pl
)
H §
W
Y.
m(\ﬁwm\/\mﬂ QAIW\K \/Hl’\ g/()fﬁ ﬂr (V\/ >
(

Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).

)
ity

s
E— Pow C‘%’NMJ”%” Is GWS)//'VQ) >0

Wmﬁ Tﬁ Mf w.

Gradient Descent

* Gradient descent is an iterative algorithm:
— We start with some initial guess, wP.
— Generate new guess by moving in the negative gradient direction:

W= o= VW)

(The scalar aV is the “step size’.)

T 4
g

— Repeat to successively refine the guess: Vj = t/\/f - X v t >
G {V\Oyoe]&f \/\/Q> V\/}) \/_/L/) Y An

&// L n r
— Stop if not making progress or || 0,5 1 < ¢ (Seme swel 1 be)

VE)= X1, 7)
NI

Olnd)

Gradient Descent

If at is small enough and Vf(wk) # 0, guaranteed'to decrease ‘t’:

UC(W 4{) < ﬂ"vi)

Under weak conditions, procedure converges to a local minimum.

/))f/
XeR
ﬂ”/”m“)? y iy :06%/9
Tmz/ﬁffm/)(7)(" O[C/g)
— If solution is good enough after t iterations, gradient descent can be faster:

* Thisis true if (t < d) and (t < d?/n), gradient descent is often better when d is very large.

Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d3).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.

Nesterov’s and Newton’s methods are variants with fewer iterations.
— For special case of L2-regularized least squares, can also use ‘conjugate’ gradient.

Gradient Descent in 2D

/) W% a NN
37/{/ ")/) 7
%

Convex Functions

* |s finding a local minimum good enough?

— For least squares and Huber loss: yes, because they are convex.

* A function is convex if: e hord
— Domain is a convex s t{ and function is never above chord’ N ed “1
N o

n \AO()
\\\ii;%/4§\[f Cd A C enveX
bt ey ual

Mor g,
— “Curved upwards everywhere”. o i

* All local minima of convex functions are also global minima:

T b lecd wipinun (F wowle hoe
+o cwurve é@ﬁﬂ!ffgﬁf, f@ realhn \?MW'

T 5 VoA 'WE.

General Convex Error Functions

* Consider a general linear regression objective:
A _
\C(w> - Z_‘ gw;\wl ()
=

* If the ‘error’ function ‘g’ is convex, then we can show ‘f’ is convex.
e Square function, absolute value, Huber loss:

‘] |
z \ /
Légél R
L 0
0

h(z/

oJ

Very Robust Regression

e We could also consider non-convex or concave error functions:

pa

N

— Eventually ‘give up’ on trying to make large errors smaller.

* These can be very robust:

* With non-convex errors, finding global minimum is hard.
e Absolute value is the most robust convex error function. <x

Motivation for Considering Worst Case

‘Brittle’ Regression

* What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* |n this case you can use something like the infinity-norm:

Sy e Jell. = meeile, g

* Very sensitive to outliers (brittle), but worst case will be better.

Log-Sum-Exp Function

As with the L1-norm, the Lee-norm is convex but non-smooth.
— True for all norms (recall that we always square the L2-norm).

Log-Sum-Exp function is a smooth approximation to max function:

nay ZXA»§ iy ’@ﬁ(i 8><F(>(f'>>,
Intuition: : "

— Liexp(x;) = maxexp(x;), largest element is magnified exponentially.
l

— Recall that log(exp(x;)) = x; Lyt 06 § If
=AW — f\/\ . - >/
To use for brittle regression- A {L fi W

- mm%7 A Y E/ v\, X /1 (79 < é/\ €7<“f><‘/ﬂ"\,\/77(;,\ -+ %ﬁ €Xyo<w~l(;7/k>>

Log-Sum-Exp Trick

* Numerical problem is that exp(x,) might overflow
— For example, exp(100) has more than 40 digits.

* Log-sum-exp ‘trick’: | { [g: mw% X'E

. A 7

og (%exxp(xm = log (Zfe% (. = p*R)

= o (ZﬁKUD)@yf(ﬁ»
=)9(@/’0 ﬁ>%€x XA‘/SD

—

—)oq (GXV)Q@)) + [09 QZQ’(f (X;\ﬁ»

— @ -+ ‘Oﬂ(%wg\

Summary

Robust regression using L1-norm/Huber is less sensitive to outliers.
Gradient descent finds local minimum of differentiable function.
Convex functions do not have non-global local minima.
Log-Sum-Exp function: smooth approximation to maximum.

Next time:
— What if we don’t know which features are relevant?

