CPSC 340:
Machine Learning and Data Mining

Robust Regression
Fall 2015



Admin

* Can you see Assignment 1 grades on UBC connect?
— Auditors, don’t worry about it.

* You should already be working on Assignment 3.

* Notes regarding midterm:
— This lecture is the last topic that the midterm will cover.
— Practice midterm coming soon.
— Questions will be similar to assignment questions.
— Questions will only cover topics covered in Assignments 1-3.



RBF Basis with L2-Regularization

* Use {RBF basis, L2-Regularization} and Cross-validation for {g, A}

— Non-parametric basis, magic of regularization, and tuning for test error!

RBF Basis (sigma = 2.000000) __RBF Basis (sigma = 0.500000)

RBF Basis (sigma = 0.125000)
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— Can add bias or linear/poly basis to do better away from data.
— Like KNN, it’s expensive at test time.



RBF Basis with L2-Regularization

05| u

o) & b=

L i
sk ', L] I: 1-!-

2%




RBF Basis with L2-Regularization
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Least Squares with Outliers

* Least squares is very sensitive to outliers.
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Robust Regression with Outlier

e Absolute error is more robust to outliers:
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Regression with the L1-Norm

* Unfortunately, minimizing the absolute error is harder:
— We can’t take the gradient at zero. \2\
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— Generally, harder to minimize non-smooth than smooth functions.
— Could solve as ‘linear program’, but harder than ‘linear system’.



Smooth Approximations to the L1-Norm

* There are differentiable approximations to absolute value.
* For example, the Huber loss:
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* No closed-form solution for V f(x) = 0, but can use gradient

descent. o . 5|
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Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).
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Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).
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Gradient Descent

* Gradient descent is based on a simple observation:

— Give parameters ‘wY, vector direction of largest decrease is —V f(w?)).
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Gradient Descent

* Gradient descent is an iterative algorithm:
— We start with some initial guess, wP.
— Generate new guess by moving in the negative gradient direction:
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(The scalar aV is the “step size’.)
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Gradient Descent

If at is small enough and Vf(wk) # 0, guaranteed'to decrease ‘t’:
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Under weak conditions, procedure converges to a local minimum.
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— If solution is good enough after t iterations, gradient descent can be faster:

* Thisis true if (t < d) and (t < d?/n), gradient descent is often better when d is very large.

Least squares via normal equations vs. gradient descent:
— Normal equations cost O(nd? + d3).
— Gradient descent costs O(ndt) to run for ‘t’ iterations.

Nesterov’s and Newton’s methods are variants with fewer iterations.
— For special case of L2-regularized least squares, can also use ‘conjugate’ gradient.



Gradient Descent in 2D
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Convex Functions

* |s finding a local minimum good enough?

— For least squares and Huber loss: yes, because they are convex.

* A function is convex if: e hord
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* All local minima of convex functions are also global minima:
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General Convex Error Functions

* Consider a general linear regression objective:
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* If the ‘error’ function ‘g’ is convex, then we can show ‘f’ is convex.
e Square function, absolute value, Huber loss:
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Very Robust Regression

e We could also consider non-convex or concave error functions:
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— Eventually ‘give up’ on trying to make large errors smaller.

* These can be very robust:

* With non-convex errors, finding global minimum is hard.
e Absolute value is the most robust convex error function. <x



Motivation for Considering Worst Case




‘Brittle’ Regression

* What if you really care about getting the outliers right?
— You want best performance on worst training example.
— For example, if in worst case the plane can crash.

* |n this case you can use something like the infinity-norm:
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* Very sensitive to outliers (brittle), but worst case will be better.



Log-Sum-Exp Function

As with the L1-norm, the Lee-norm is convex but non-smooth.
— True for all norms (recall that we always square the L2-norm).

Log-Sum-Exp function is a smooth approximation to max function:
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Log-Sum-Exp Trick

* Numerical problem is that exp(x,) might overflow
— For example, exp(100) has more than 40 digits.

* Log-sum-exp ‘trick’: | { [g: mw% X'E
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Summary

Robust regression using L1-norm/Huber is less sensitive to outliers.
Gradient descent finds local minimum of differentiable function.
Convex functions do not have non-global local minima.
Log-Sum-Exp function: smooth approximation to maximum.

Next time:
— What if we don’t know which features are relevant?



