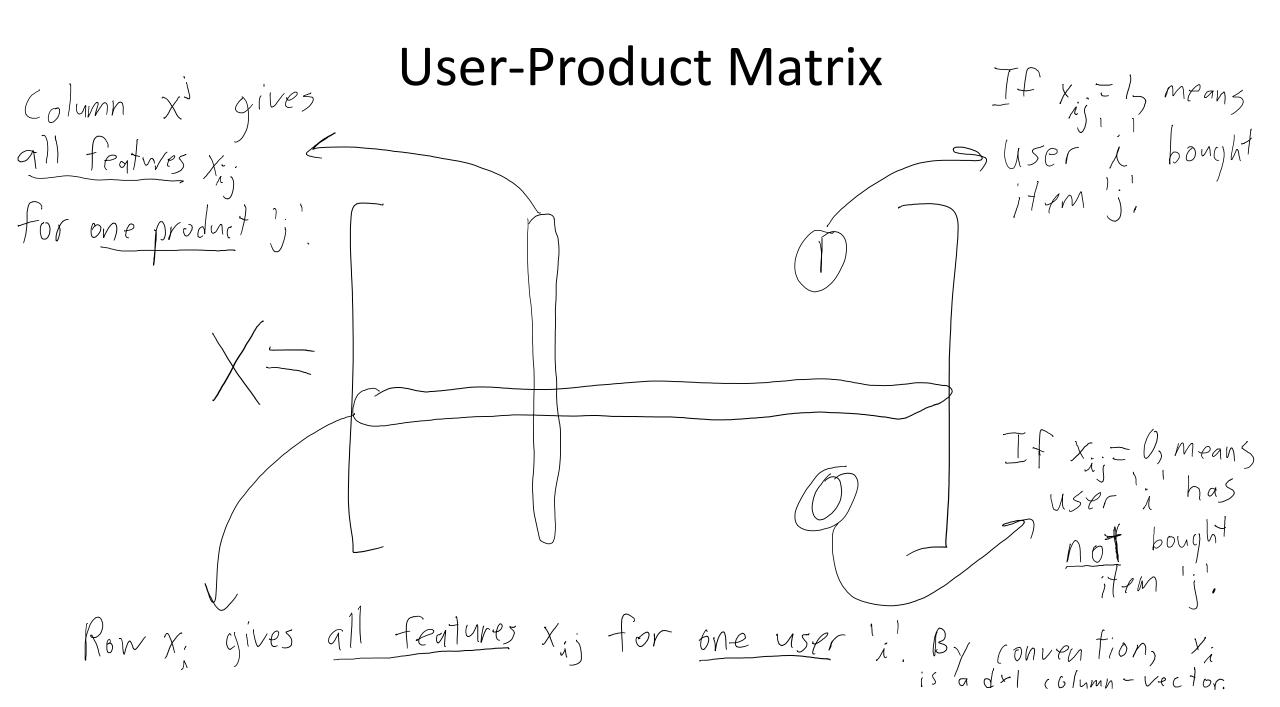
CPSC 340: Machine Learning and Data Mining

Linear Least Squares Fall 2015

Admin

- Assignment 3 out today.
 - Longer than other assignments, but due on October 23rd.
- Midterm moved to October 30.
 - Covers Assignments 1-3.
 - Practice midterm coming.

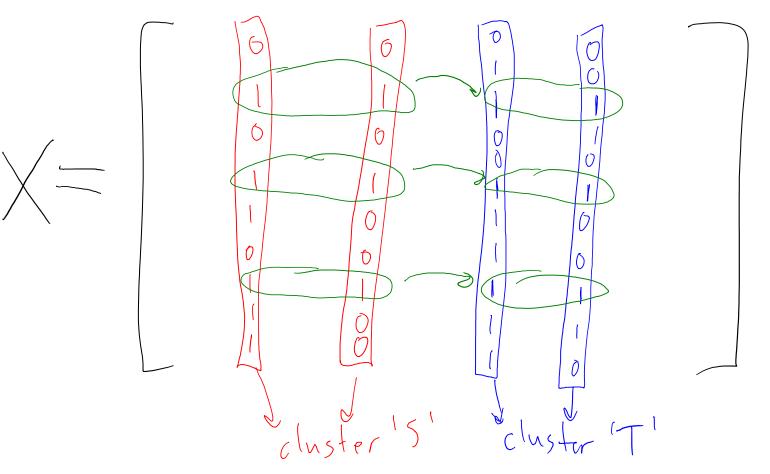


Clustering User-Product Matrix

Clustering User-Product Matrix These products are cluster "2" • We could cluster by columns: - These products are cluster "!" Apply clustering to X^T.

Association Rules

• Association rules (S => T): all '1' in cluster S => all '1' in cluster T.



Amazon Product Recommendation

- Amazon Product Recommendation works by columns:
 - Conceptually, you take the user-product matrix:

– And transpose it to make a product-user matrix:

- Find similar products as nearest neighbours among products.
 - Cosine similarity used to judge how 'close'

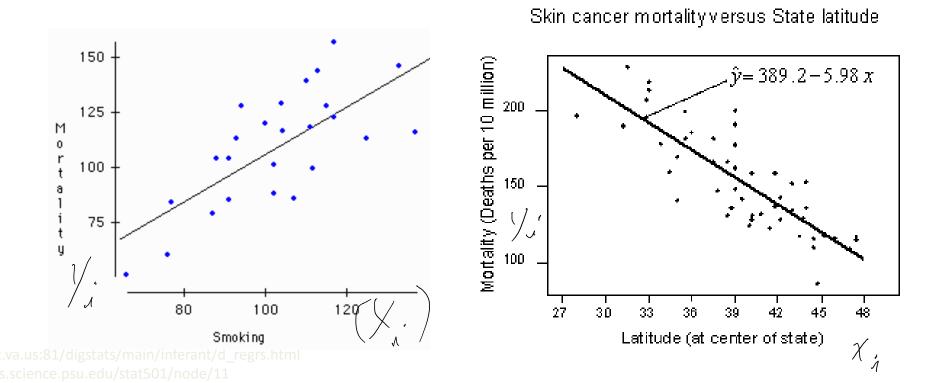
Supervised Learning Round 2: Regression

• We're going to revisit supervised learning:

- Previously, we assumed y_i was discrete:
 - For example, $y_i = 'spam'$ or $y_i = 'not spam'$.
 - 'Classification'.
- How we do we handle a continuous y_i?
 - For example, $y_i = 10.34$ cm.
 - 'Regression'.

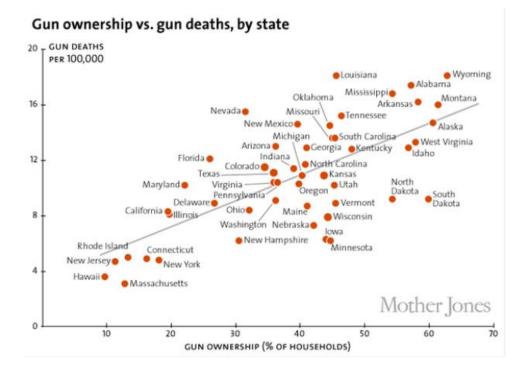
Example: Dependent vs. Explanatory Variables

- We want to discover relationship between factor and mortality:
 - Does number of lung cancer deaths change with number of cigarettes?
 - Does number of skin cancer deaths change with latitude?



Example: Dependent vs. Explanatory Variables

- We want to discover relationship between factor and mortality:
 - Does number of lung cancer deaths change with number of cigarettes?
 - Does number of skin cancer deaths change with latitude?
 - Does number of gun deaths change with gun ownership?



Handling Continuous Target Label

- One way to handle continuous y_i: discretize.
 - E.g., for 'age' could use {'age ≤ 20 ', '20 < age ≤ 30 ', 'age > 30'}.
 - Now can apply methods for classification to do regression.
 - But coarse discretization loses resolution.
 - And fine discretization requires lots of data.
- We can adapt classification methods to perform regression.
 Next time: regression trees, generative models, non-parametric models.
- Today: one of oldest, but still most popular/important methods:

Linear regression based on squared error.

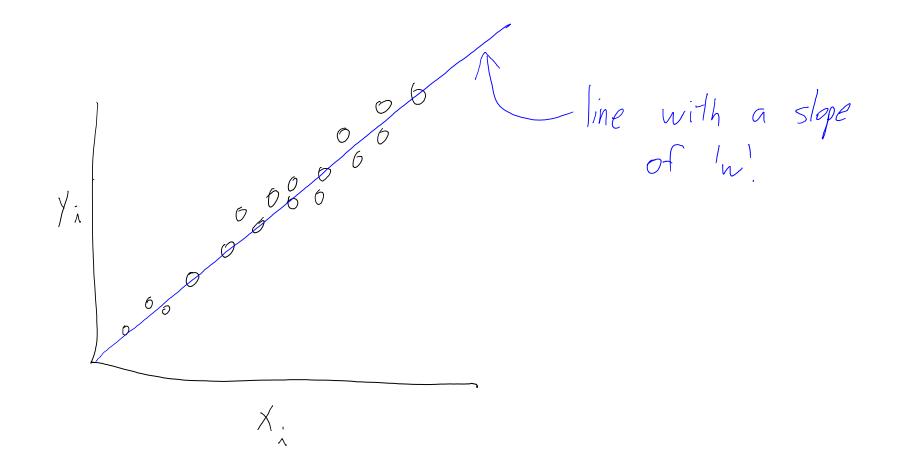
Linear Regression in 1 Dimension

- Assume we only have 1 feature:
 - For example, x_i is number of cigarettes, y_i is number of lung cancer deaths.
- Linear regression models y_i is a linear function of x_i:

$$/_{\lambda} = W X_{\lambda}$$

- The parameter 'w' is the weight or regression coefficient of x_i.
- As x_i changes, slope 'w' affects the rate that y_i increases/decreases:
 - Positive 'w': y_i increase as x_i increases.
 - Negative 'w': y_i decreases as x_i increases.

Linear Regression in 1 Dimension



• Our linear model:

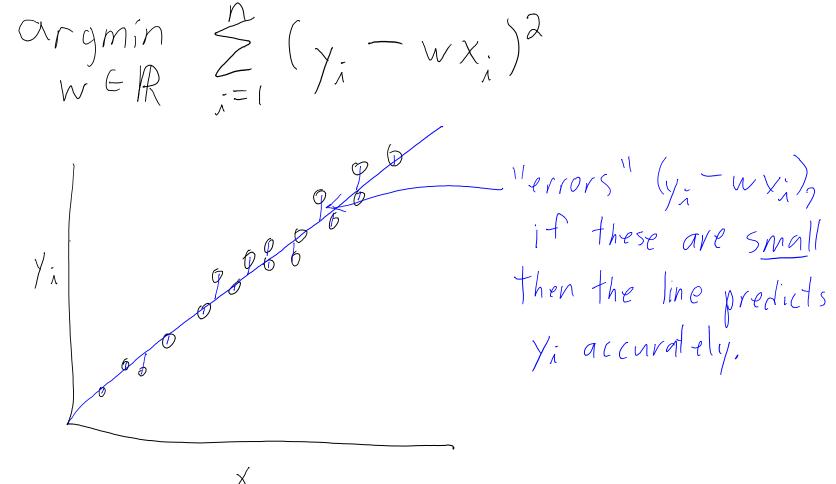
$$\gamma_{\lambda} = W X_{\lambda}$$

• Classic way to set slope 'w' is minimizing sum of squared errors:

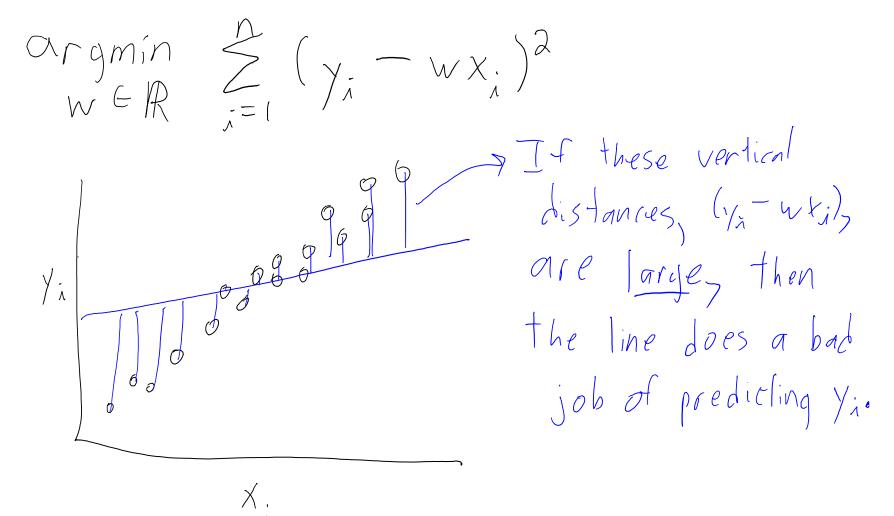
$$\frac{\alpha rgmin}{w \in R} \sum_{j=1}^{n} (\gamma_j - w \chi_j)^2$$

- There are some justifications for this choice.
 - Assuming errors are Gaussian or using 'central limit theorem'.
- But usually, it is done because it is easy to compute.

• Classic way to set slope 'w' is minimizing sum of squared errors:

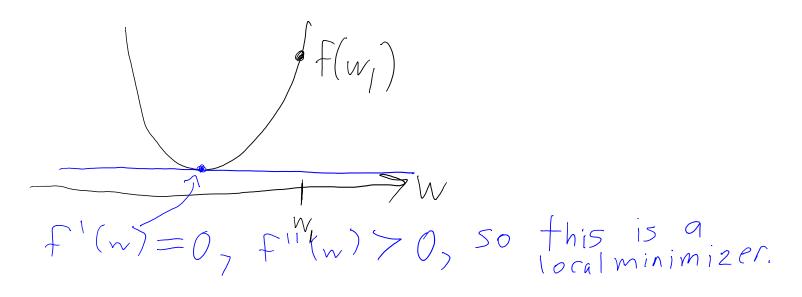


• Classic way to set slope 'w' is minimizing sum of squared errors:



Minimizing a Differential Function

- Derivative-based approach to minimizing differentiable function 'f':
 - 1. Take the derivative of 'f'.
 - 2. Find points 'w' where the derivative is equal to 0.
 - Take the value among these points with the smallest f(w).
 (This assumes minimizer exists, if not sure then check that f''(w) > 0.)



• Solving for 'w' that minimizes sum of squared errors:

• Checking that this is minimum:

$$f'(w) = -\frac{2}{2} \left(\frac{1}{12} - \frac{1}{12} \frac{1}{12} \right) x_{i,7} = 56$$

$$f''(w) = \frac{2}{2} \frac{1}{12} x_{i,7}^{2}$$
We know that (any real number)² cannot be negative, so
$$\frac{2}{2} \frac{1}{12} \frac{1}{2} \frac{1}{2}$$

Motivation: Combining Explanatory Variables

- Smoking is not the only contributor to lung cancer.
 - For example, environmental factors like exposure to asbestos.
- How can we model the combined effect of smoking and asbestos?
- We can do this with a higher-dimensional linear function:

$$y_{i} = W_{i} X_{i1} + W_{2} X_{i2}$$

- Now we have a weight w_i for each feature 'j'.
- If we have 'd' features, the d-dimensional linear model is:

$$V_i = W_1 \times_{i1} + W_2 \times_{i2} + \cdots + W_d \times_{id}$$

Least Squares in d-Dimensions

• The 'd'-dimensional linear model:

$$Y_{i} = w_{1} x_{i1} + w_{2} x_{i2} + \cdots + w_{d} x_{id}$$

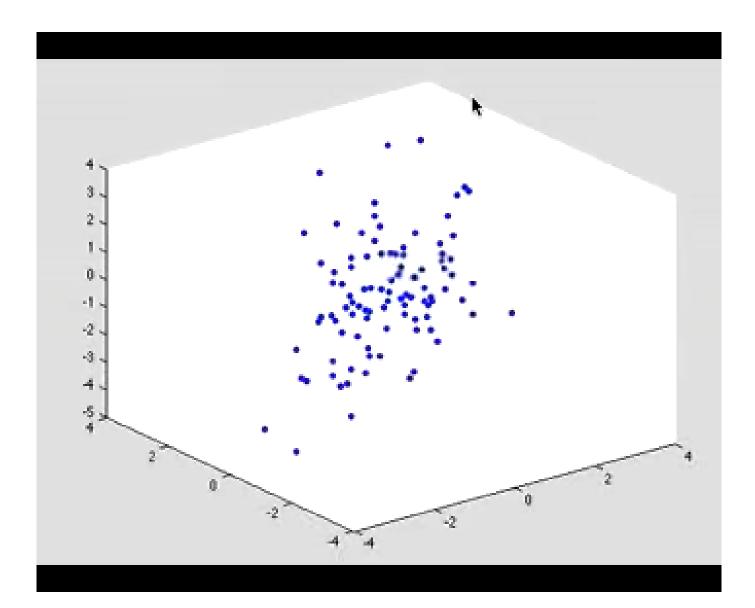
$$= \sum_{j=1}^{d} w_{j} x_{ij} = w^{T} x_{i}$$
between w and x_{i} .

• The general linear least squares model:

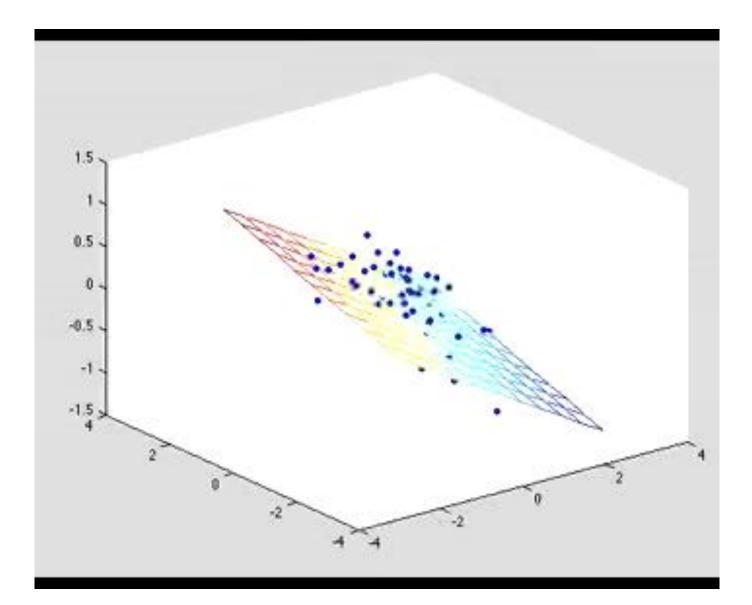
$$\frac{dromin}{w \in \mathbb{R}^d} \frac{1}{2} \sum_{i=1}^n \left(y_i - w_{X_i}^T \right)^2$$

• This is different than fitting each w_i individually.

Least Squares in 2-Dimensions



Least Squares in 2-Dimensions



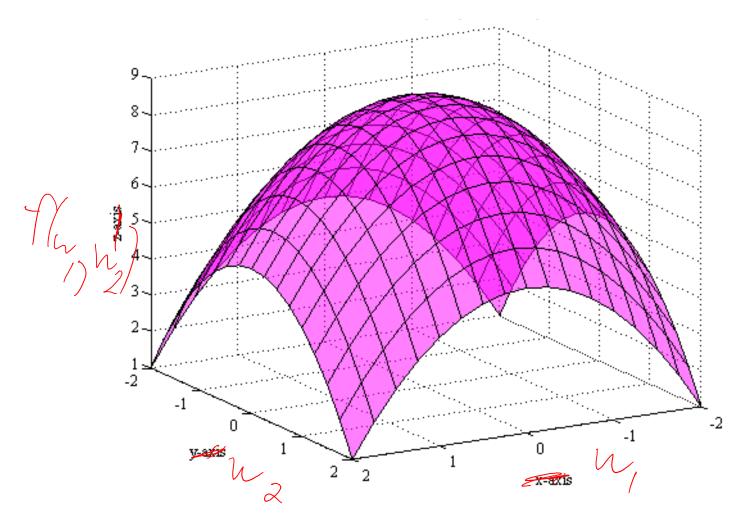
• Consider a multivariate real-valued function 'f'.

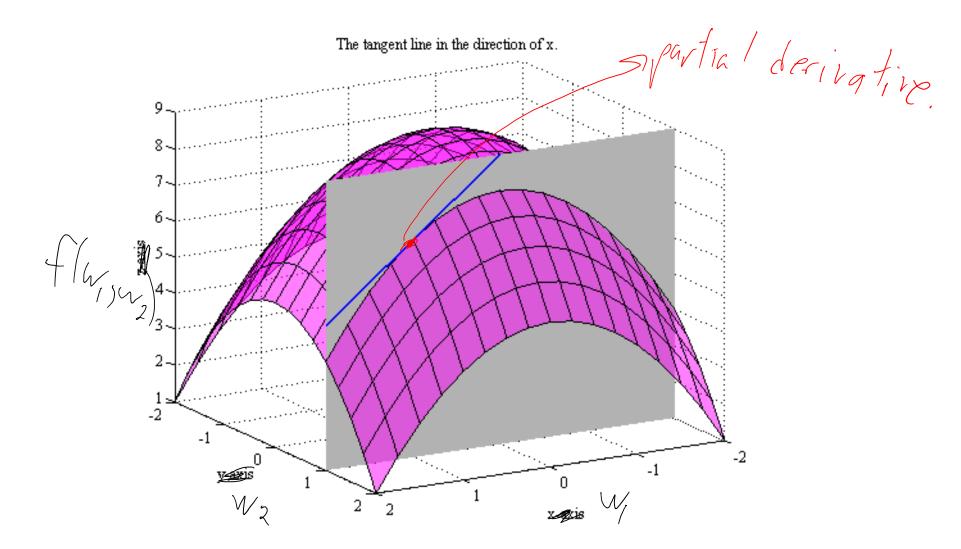
For example,
$$f(w_1, w_2) = 3w_1 + w_2^2 + w_1w_2 + C$$
.

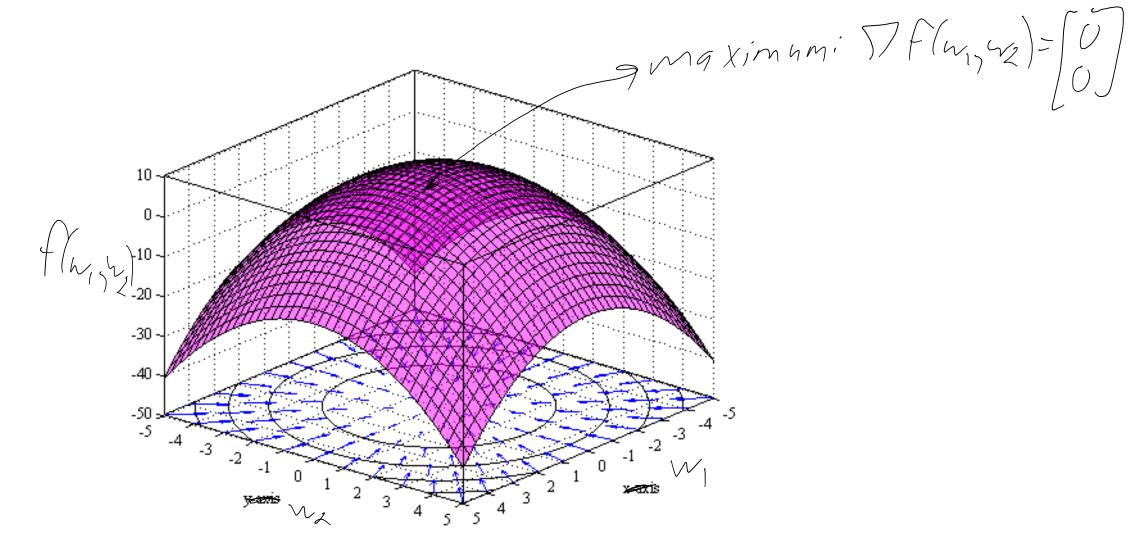
- Partial derivative with respect to 'j':
 - Derivative if we treat all other variables as fixed constants.

In example:
$$2f = 3 + 0 + w_2 + 0 = R + w_2$$

 y_{nableq}
 $2w_1 = 0 + 2w_2 + w_1 + 0 = 2w_2 + w_1$
Gradient is vector with partial derivative 'j' in position 'j':
In example, $\nabla f(w_{11}w_2) = \begin{pmatrix} 2f \\ 2w_1 \\ 2w_2 \end{pmatrix} = \begin{pmatrix} 3+w_2 \\ 2w_1 \\ 2w_2 \end{pmatrix} = \begin{pmatrix} 3+w_2 \\ 2w_2 + w_1 \end{pmatrix} = \begin{pmatrix} 3+w_2 \\ 2w_2 + w_2 \end{pmatrix} = \begin{pmatrix} 3+w_2 \\ 2w_2 + w_2 + w_2 + w_2 + w_2 \end{pmatrix} = \begin{pmatrix} 3+w_2 + w_2 + w_2$



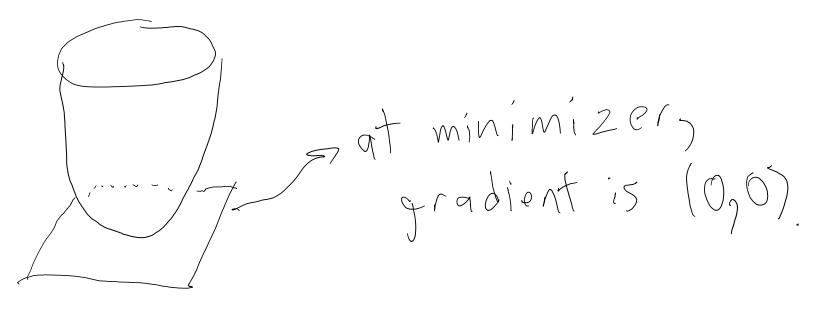




Minima of Multivariate Functions

- To minimize a multivariate function (in principle):
 - 1. Find stationary points where ∇ f(w) = 0 (generalizes of f'(w) = 0).
 - 2. Take the value among these points with smallest f(w).

(This again assumes minimizer exists. If not sure, need to check that 'Hessian' matrix ∇^2 f(w) of second partial derivatives has non-negative eigenvalues.)



Least Squares Gradient
Objective is
$$f(w) = \frac{1}{2} \sum_{i=1}^{2} (y_i - w^T x_i)^2$$
.
Partial derivative with respect to 1;1:
 $2f = -\sum_{i=1}^{2} (y_i - w^T x_i) x_i$.

Gradient vector:

$$\nabla f(w) = \begin{bmatrix} -\sum_{i=1}^{n} (y_i - w X_i) X_{i1} \\ -\sum_{i=1}^{n} (y_i - w X_i) X_{i2} \\ -\sum_{i=1}^{n} (y_i - w X_i) X_{i4} \end{bmatrix}$$

Summary

- Regression considers the case of a continuous y_i.
- Least squares is a classic method for fitting linear models.
- Differentiation leads to a closed-form solution for slope 'w'.
- Gradient is vector containing partial derivatives wrt all variables.

- Next time:
 - Non-linear regression methods.