
Calculating Threesomes, with Blame

Ronald Garcia

September 24, 2013

Abstract

Research on combining static and dynamic types has yielded two approaches to preserving proper tail calls: coer-
cion calculi and threesomes. Coercion calculi elegantly specify space-efficient cast behavior, even when augmented
with blame tracking, but implementing their semantics directly is difficult. Threesomes, on the other hand, have a
straightforward recursive implementation, but endowing them with blame tracking was a subtle and opaque process.
This paper bridges the gap between blame-tracking coercions and threesomes by using the former to produce the
latter. We revisit the coercion- and threesome-based variants of Wadler and Findler’s Blame Calculus and stepwise
transform the coercion calculus into its threesome counterpart. Guided by this process, we construct three new three-
some calculi for blame tracking strategies identified by Siek et al. Using these results, we can implement cast-based
languages that detect errors earlier, catch more errors, and reflect an intuitive conception of safe and unsafe casts.

1 Introduction
Languages that combine static and dynamic typing have recently been the subject of significant study [Tobin-Hochstadt
and Felleisen, 2008, Siek and Vachharajani, 2008, Sergey and Clarke, 2012, Ina and Igarashi, 2011] One particular
family of such languages is λ〈T 〉, the lambda calculus extended with a dynamic type ? and casts (Fig. 1). A suite of
semantics for it have been proposed (e.g., [Siek and Taha, 2006]), including variants that track and report the source of
cast failures (termed “blame tracking”) [Wadler and Findler, 2009]. These systems bring more checking to dynamic
programs, more flexibility to static programs, and a smooth migration path between the two.

Herman et al. [2007] observed that higher-order casts—casts between function types—can cause space leaks
(Sect. 2.1). This problem has been addressed using two seemingly distinct approaches. The first approach compiles
casts to coercions [Henglein, 1994], a low-level representation and machine model that can represent arbitrary strings
of casts compactly [Herman et al., 2007, Siek et al., 2009]. The second approach compiles casts to a threesome of
types, which represents a downcast (from the first type to the second), followed by an upcast (from the second type
to the third) [Siek and Wadler, 2010]. Threesomes are combined by composing their middle types to produce a new
middle type.

These approaches to space efficiency have complementary advantages and disadvantages. Coercion calculi ele-
gantly specify space-efficient cast behavior, even when augmented with blame tracking, but implementing their seman-
tics directly is difficult (Sec. 2.7). Threesomes, on the other hand, have a straightforward recursive implementation,
but endowing them with blame tracking was a subtle and opaque process (Sec. 2.2.1). Moreover, the Threesome
Calculus [Siek and Wadler, 2010] provides a space-efficient implementation of one blame tracking strategy, but other
blame tracking strategies have been developed on top of coercions with useful properties like catching earlier errors
and a traditional notion of subtyping to characterize safe casts [Siek et al., 2009]. We and our collaborators desire an
effective implementation approach for these other strategies as well.

This paper bridges the gap between blame-tracking coercions and threesomes by using the former to produce the
latter. Our contributions are as follows:

• We develop three new threesome calculi for blame tracking strategies identified by [Siek et al., 2009]. Using
these results, we can implement cast-based languages that detect more errors, detect them earlier, and present
an intuitive conception of safe and unsafe casts (Sects. 4–5).

1

• As a step in our methodology we revisit the coercion- and threesome-based variants of the Blame Calcu-
lus [Wadler and Findler, 2009, Siek et al., 2009, Siek and Wadler, 2010]. After developing threesomes without
blame, the key challenge in developing the threesome calculus was to introduce blame labels in a manner that
reflects the desired blame strategy while preserving space-efficiency. This was originally done by experiment-
ing with blame labels on threesomes, and proven correct post-hoc. In contrast, we start from the corresponding
coercion calculus and transform it into a threesome calculus in small, easily verified steps (Sect. 3). This re-
construction lays the groundwork for developing new threesomes, but it also clearly shows that coercions and
threesomes are two alternative representations of the same concept, one more suited to specification and the
other to implementation. This deeper understanding is a secondary contribution of this work.

2 Background: Casts, Threesomes, and Coercions
This section introduces background on cast calculi, including space efficiency and blame assignment. We then discuss
threesomes and coercion calculi, the two means for achieving space efficiency, and their strengths and weaknesses.
For now, threesomes are discussed only briefly, as we revisit them in detail later. Coercions are discussed in detail
now, since they are the technical starting point for our results.

2.1 Cast Calculi
A cast-based language like λ〈T 〉 (Fig. 1) extends the lambda calculus with a dynamic type ?, which represents a
universal type, as well as a cast expression 〈T2⇐T1〉l e, which attempts to coerce the value of expression e from type
T1 to type T2. If it succeeds, then computation proceeds with the value at the new type; if it fails, then a cast error
indicates that the source-language cast with the label l is to blame. Many languages based on such principles have
been designed and studied in the literature [Abadi et al., 1991, Wrigstad et al., 2010, Rastogi et al., 2012].

The semantics of casts are straightforward for first-order values. For instance, casting a number to ? and back
succeeds:

〈Int⇐?〉l2 〈?⇐Int〉l2 42 −→∗ 42

but projecting a ?-wrapped integer to the wrong type fails:

〈Bool⇐?〉l2 〈?⇐Int〉l1 42 −→∗ blame l2

The projection from ? to Bool is reported to have failed.
Languages like λ〈T 〉 also support higher-order casts, which apply to function-typed objects, and whose meaning is

dictated by the structure of the relevant types. As a basic example, consider the expression:

f ≡ 〈?→ Bool⇐?→ ?〉l3 λx : ?.〈?⇐Int〉l2 42

The function inside of the l3 cast can never successfully behave as ? → Bool, and the body of the function is not to
blame for this since 42 can always be cast to ?. However, this cannot be determined at the point of the l3 cast without
analyzing the body of the function. For this reason, the cast l3 cannot fail yet, but is ultimately a bad cast.

To detect these errors without analyzing function bodies, higher-order casts adopt the strategy of delaying res-
olution of the cast, and carry its blame label so that failure can be detected when the function is used [Findler and
Felleisen, 2002]. To do so, the cast is split at the point of application and resolved in terms of the first-order strategy:

f (〈?⇐Int〉l4 7)

−→ 〈Bool⇐?〉l3 ((λx . . .) 〈?⇐?〉l3 〈?⇐Int〉l4 7)

−→ 〈Bool⇐?〉l3 ((λx . . .) 〈?⇐Int〉l4 7)

−→ 〈Bool⇐?〉l3 〈?⇐Int〉l2 42 −→ blame l3.

In short, at the application point, the l3 cast is split into two first-order casts, one of which is a first-order identity
cast that immediately resolves. Then the function is called and its result is projected, yielding a failure that blames the
source program’s higher-order cast l3.

2

Space Efficiency As Herman et al. [2007] observe, delayed higher-order casts can lead to undesirable space con-
sumption, both by accumulating casts around values as well as on the control stack. To demonstrate the first, they
present the following example.

let rec even(n : Int, k : Dyn→Bool) : Bool =

if (n = 0) then k(〈?⇐Bool〉l1 True)
else odd(n - 1, 〈Bool→ Bool⇐?→ Bool〉l2 k)

and odd(n : Int, k : Bool→Bool) : Bool =

if (n = 0) then k(False)

else even(n - 1, 〈?→ Bool⇐Bool→ Bool〉l3 k)

Whenever even or odd is called at non-zero value, another wrapper is placed around the function k. Despite these
functions being tail recursive, a trace of this routine shows the accumulating casts.

even(3,k) −→∗

odd(2,〈Bool→ Bool⇐?→ Bool〉l2 k) −→∗

even(1,〈?→ Bool⇐Bool→ Bool〉l2
〈Bool→ Bool⇐?→ Bool〉l3 k) −→∗

odd(0,〈Bool→ Bool⇐?→ Bool〉l2
〈?→ Bool⇐Bool→ Bool〉l3
〈Bool→ Bool⇐?→ Bool〉l2 k) −→ . . .

A similar program to the above demonstrates how cast expressions can accumulate on the runtime stack and break
proper tail recursion.

To address this expansion, Herman et al. turn to the Coercion Calculus [Henglein, 1994], a low-level formalism
for casts that reduces compositions of casts according to its specialized instruction set. More recently, Siek and Wadler
[2010] develops threesomes to alleviate the same space leakage issues. Later we show how each approach prevents
these space leaks.

Blame Tracking Strategies Wadler and Findler [2009] adapted the notion of blame tracking from higher-order
contracts to higher-order casts. Their Blame Calculus introduced a label-passing strategy for detecting cast failures
and attributing them to source program casts. Later, Siek et al. [2009] observe that various calculi detect cast failures
differently for the same expressions. That work lays out a design space for languages with dynamic casts, varying the
cast detection strategy on the following two parameters.

First, some cast calculi detect failures more aggressively than others. Take for example the following expression:

〈Bool→Int⇐?→?〉l2 〈?→?⇐Int→Int〉l1 (λx : Int. x)

The top-level type constructors of both casts are consistent, but the inner types, Int and Bool, conflict. According
to the design space, a lazy blame tracking strategy evaluates this expression without error. An eager strategy, on the
other hand, reports an error immediately.

Second, the ? type can be viewed as a universal type to which any other type can be safely coerced. Under
that view, ? can be seen as a supertype of all other types, and an arrow types can be related according to traditional
subtyping, which is contravariant on the domains and covariant on the ranges of function types. This model, called
“D”, blames only “downcasts” according to this conception. The blame calculus, in contrast, is designed to conceive
of casts as a means at runtime of mediating the barrier between two interacting languages, one statically-typed and one
dynamically typed. The blame strategy of the Blame Calculus (which we call “UD” after Siek et al. [2009]) ensures
that blame is always allocated to code from the dynamic language1. This difference in strategy manifests in the cast
calculus. For example, consider the following expression:

(〈?→Int⇐?〉l3
〈?⇐Bool→Bool〉l2 λx : Bool. x) (〈?⇐Int〉l1 1)

1This is partially achieved by assigning positive and negative polarities to blame labels. This aspect is not germane to this work, but straightfor-
ward to incorporate.

3

x ∈ Variables, k ∈ Constants, B ∈ BaseTypes, l ∈ Labels
types T ::= ? | B | T → T

expressions e ::= k | x | λx : T. e | e e | 〈T⇐T 〉l e

Γ ` e : T1

Γ ` 〈T2⇐T1〉l e : T2

Figure 1: The λ〈T 〉 Calculus

This expression definitely leads to a cast failure, but while the UD strategy assigns blame with respect to the l2 cast,
the D strategy blames the l3 downcast.

Siek et al. [2009] present 4 coercion-based calculi—named Lazy UD, Lazy D, Eager UD, and Eager D—that
exhibit these different points in the design space of casts while supporting space-efficiency. The Lazy UD variant
corresponds directly to the Blame Calculus, which was originally specified directly in terms of space-leaking casts.

2.2 Threesomes
The goal of threesomes is to represent any sequence of casts as exactly two casts, a cast 〈T2⇐T1〉 from a less precise
type T1 to a more precise type T2 followed by a cast 〈T3⇐T2〉 to a less precise type T3. These two casts are called
a threesome because they always invoke three types, the two less precise outer types T3 and T1, and one most precise
middle type T2. For succinctness, such threesomes are written 〈T3

T2⇐=T1〉.
Informally, a type is more precise than any other type that has the same structure except in positions where specific

type structure is replaced with ?. This is formalized as a (partial) ordering of types <:n:

B <:n B B <:n ?

T1 <:n T3 T2 <:n T4

T1 → T2 <:n T3 → T4

For instance, (Int→ Bool)→ Int <:n ?→ Int. Any single cast 〈T2⇐T1〉 can be represented by the threesome

〈T2
T1 & T2⇐= T1〉 where T1 & T2 is the greatest lowerbound of the two types with respect to the ordering relation. To

ensure that & is well defined, the “type” ⊥ is used to represent type inconsistencies.

⊥ <:n T

The definition of & is as follows:

? & T = T & ? = T B & B = B

(T1 → T2) & (T3 → T4) = (T1 & T3)→ (T2 & T4) T1 & T2 = ⊥ if T1 →← T2

This definition appeals to shallow inconsistency→←, which holds when two non-? types have different topmost type
constructors:

T1 →← T2 iff dT1e 6= dT2e
where dBe = B and dT1 → T2e =→

Its inverse, shallow consistency, is written↔.
Intuitively, the greatest lowerbound matches the structure of two types, and when a ? in one type meets a static

type in the other, the static type is the used. For example, the cast 〈Bool→ ?⇐?→ Int〉 compiles to the threesome
〈Bool→ ?

Bool→Int⇐= ?→ Int〉 . The ⊥ type is the greatest lower bound of two static types whose top-most type con-
structors don’t match. For example, Int & Bool = ⊥, and
((Int→ Bool)→ Int) & (Bool→ ?) = ⊥ → Int.

Threesomes support space efficiency because any sequence of threesomes (and therefore any sequence of casts)
can be represented as a single threesome. A sequence of threesomes is collapsed by taking the innermost and outermost
types of the sequence as the new outer types, and taking the greatest lowerbound of all intermediate middle types as
the new inner type. For example, a pair of threesomes can be reduced to a single threesome, e.g.:

〈Bool→ ?
Bool→Int⇐= ?→ Int〉 〈?→ Int

Bool→⊥⇐= Bool→ ?〉 f −→ 〈Bool→ ?
Bool→⊥⇐= Bool→ ?〉 f.

4

Since greatest lowerbound is associative, this may be computed sequentially from left-to-right, or right-to-left.
Finally, as with traditional casts, higher-order threesomes are split when they appear in a function application, for

example:
(〈Bool→ ?

Bool→Int⇐= ?→ Int〉 f) true −→ 〈? Int⇐=Int〉 (f 〈? Bool⇐=Bool〉 true)

A cast with a ⊥ middle type fails immediately:

〈Bool ⊥⇐=Int〉 42 −→ blame.

If we consider the even-odd example again, and ignore blame for now, we can compile its casts to threesomes:
〈?⇐Bool〉 becomes 〈? Bool⇐=Bool〉 , 〈Bool → Bool⇐ ? → Bool〉 becomes 〈Bool→ Bool

Bool→Bool⇐= ?→ Bool〉 ,
and 〈? → Bool⇐ Bool → Bool〉 becomes 〈?→ Bool

Bool→Bool⇐= Bool→ Bool〉 . Then the earlier execution trace
demonstrates the space savings of threesomes:

even(3,k) −→∗

odd(2,〈Bool→ Bool
Bool→Bool⇐= ?→ Bool〉 k) −→∗

even(1,〈?→ Bool
Bool→Bool⇐= ?→ Bool〉 k) −→∗

odd(0,〈Bool→ Bool
Bool→Bool⇐= ?→ Bool〉 k) −→ . . .

Rather than accumulating like casts, threesomes reduce to a single equivalent threesome at each step. One key property
of threesomes that enables this is that their composition is associative. Associativity is important for space-efficiency
because it means that threesomes on the call stack can be compressed from left-to-right as a computation proceeds,
rather than waiting until a value is returned. This is key to recovering proper tail calls.

2.2.1 Adding Blame to Threesomes is Subtle

Threesomes have some very compelling properties. First, the composition operation for threesomes is easy to im-
plement directly as a recursive function on the middle types. Furthermore, threesomes without blame are easy to
understand and explain and proving that they correspond to casts is straightforward.

However, threesomes become more opaque when they are enhanced with support for blame tracking. To support
blame tracking, Siek and Wadler [2010] annotates subcomponents of the middle type with blame labels, now calling
them labeled types, and extends the composition operation to propagate those blame labels. Developing the annotation
strategy was a subtle and time-consuming process [Siek, 2011b], involving trial and error.2 The resulting system was
proven equivalent to the coercion calculus after-the-fact, a great achievement, but one is hard-pressed to recognize
the blame strategy as encoded in the labeling of the types or the structure of the composition operation. In short, we
know that it’s correct, but we don’t necessarily understand why. Nevertheless, threesomes with blame are a compelling
implementation model for blame-tracking languages.

Later, we show that we can re-discover the correct labelling and composition strategy for Lazy UD threesomes.
The Threesome Calculus provides little guidance for how to make threesomes for other blame-tracking strategies, but
our reconstruction paves the way for three new threesome-based calculi that correspond to alternative blame-tracking
designs, without all the trial and error.

2.3 Lazy UD Coercions
In this section, we present in detail the Lazy UD Coercion Calculus, which provides another space-efficient semantics
for the Blame Calculus. Coercions are expressions in a small language that characterizes type casts. Their formal
syntax is as follows:

types T ::= B | ? | T → T
atomic types P ::= B | ?
dynables G ::= B |→
expressions c ::= ιP | G! | G?l | c→ c | c ◦ c | Faill

2e.g. “We initially tried to label bottom types with a single label However, that approach fails to capture the correct blame tracking
behavior.” [Siek and Wadler, 2010]

5

As such, they refer to the types T of the surface language. There are essentially four classes of coercions. The identity
coercions ιP express casts that always succeed. In our system they are only defined at atomic types3, since identity
coercions at other types can be constructed from them. The injection coercions G! express casting a value of some
type to the ? type. In particular, the coercions B! express casts from base types to ?, while the arrow injection →!
casts values of type ? → ? to ?. Coercions for more complex function types T → T are constructed from primitive
coercions. Finally, the projection coercions G?l do the opposite, casting values from ?. Blame labels are associated
with these projections, and complex function type coercions are built from primitive coercions. The arrow coercion
constructor c → c is used to construct arrow coercions, which represent coercions among function types. Finally,
sequences of coercions are composed using the ◦ operator. Note that coercions are identified up to associativity of
composition. As with the threesome calculus, associativity is vital to space-efficiency.

Coercions are typed according to the type of input value they admit and the output type they are trying to cast it
to:

` ιP : P ⇐ P ` B?l : B ⇐ ? `→?l : ?→ ?⇐ ? ` B! : ?⇐ B `→! : ?⇐ ?→ ?

` c1 : T2 ⇐ T1 ` c2 : T4 ⇐ T3

` c1 → c2 : T1 → T4 ⇐ T2 → T3 ` Faill : T2 ⇐ T1

` c2 : T3 ⇐ T2 ` c1 : T2 ⇐ T1

` c2 ◦ c1 : T3 ⇐ T1

From here on, we only consider well-typed coercions.

2.3.1 Reduction

In order to characterize reduction, we must isolate some subsets of legal coercions:

wrappers c ::= G! | cw → cw | G! ◦ (cw → cw)

normal coercions cw ::= ιP | Faill | G! | cw → cw | G! ◦ (cw → cw)

| G?l | Faill ◦G?l | G! ◦G?l | (cw → cw) ◦G?l | G! ◦ (cw → cw) ◦G?l

These subsets capture coercions cw that are in normal form, as well as coercions c that represent delayed (sequences of)
casts wrapped around simple program values (e.g. 〈?→ Bool⇐Bool→ Bool〉l2 〈Bool→ Bool⇐?→ Bool〉l2 f).
Note that every wrapper is also a normal coercion. Coercion reduction is the compatible closure of the following
rules:

ιP ◦ c −→◦ c(1)

c ◦ ιP −→◦ c(2)

B?l ◦B! −→◦ ιB(3)

→?l◦ →! −→◦ ι? → ι?(4)

(c1 → c2) ◦ (c3 → c4) −→◦ (c3 ◦ c1)→ (c2 ◦ c4)(5)

Fail
l ◦ c −→◦ Faill(6)

c ◦ Faill −→◦ Faill(7)

G1?l ◦G2! −→◦ Faill if G1 6= G2(8)

The ιP coercion acts as left and right identity. A Faill coercion can only consume a wrapper to its right but
can consume any coercion to its left. This ensures that a rightmost failure will always dominate. For example,
Faill1 ◦Int?l2 ◦Bool! should reduce to Faill2 , which corresponds to what a standard cast semantics would produce.
To ensure this, Faill ◦G?l never reduces.

Composition distributes over arrow coercion constructors, though the domain coercions are reversed so as to treat
the domain contravariantly, while the codomain is treated covariantly.

Casts are resolved or fail whenever a projection meets an injection. If the two are compatible, then the result is an
identity, since they annihilate each other. The identity for ? → ? is constructed using the arrow coercion constructor
and the ι? coercion.

3This is a simplification of [Siek et al., 2009], which has ι at all types.

6

We relate casts to coercions using a compilation function:

〈〈?⇐B〉〉l = B!

〈〈B⇐?〉〉l = B?l

〈〈?⇐(?→ ?)〉〉l =→!

〈〈?⇐(T3 → T4)〉〉l =→! ◦ (〈〈T3⇐?〉〉l → 〈〈?⇐T4〉〉l) otherwise

〈〈(?→ ?)⇐?〉〉l =→?l

〈〈(T1 → T2)⇐?〉〉l = (〈〈?⇐T1〉〉l → 〈〈T2⇐?〉〉l)◦ →?l otherwise

〈〈P⇐P 〉〉l = ιP

〈〈T1 → T2⇐T3 → T4〉〉l = 〈〈T3⇐T1〉〉l → 〈〈T2⇐T4〉〉l

〈〈T1⇐T2〉〉l = Fail
l if T1 →← T2

For example, the paired casts

〈?→ Bool⇐Bool→ Bool〉l2 〈Bool→ Bool⇐?→ Bool〉l2

compile and reduce to the well-typed coercion expression ` (Bool! ◦ Bool?l3)→ ιBool : (?→ Bool)⇐ (?→ Bool).

2.4 The λ〈c〉 Calculus
To use the coercion calculus, we translate λ〈T 〉 programs to a related language λ〈c〉, the simply-typed lambda calculus
with coercions.

The λ〈c〉 syntax differs from λ〈T 〉 only in that cast expressions are replaced with coercion expressions 〈c〉e, whose
type rule follows:

Γ ` e : T1 ` c : T2 ⇐ T1

Γ ` 〈c〉e : T2

The translation from λ〈T 〉 to λ〈c〉 is simple: just use 〈〈T⇐T 〉〉l to compile all casts into coercions.
We present a reduction semantics for λ〈c〉, using a few extra constructs:

simple values s ::= k | λx : T. e
values v ::= s | 〈c〉s
canonicals w ::= v | blame l
frames f ::= � e | v � | 〈c〉�
contexts E ::= � | E [f]

The reduction rules for λ〈c〉 follow:

(λx : T.e) v −→ [v/x] e(1)

(〈cw1 → cw2 〉s) v −→ 〈cw2 〉(s (〈cw1 〉v))(2)

〈cw1 〉〈c2〉s −→ 〈cw1 ◦ c2〉s(3)

〈ιB〉s −→ s(4)

〈c1〉s −→ 〈cw2 〉s if c1 −→o+ cw2(5)

〈Faill〉s −→ blame l(6)

f [blame l] −→ blame l(7)

The expression f [blame l] indicates plugging the blame expression into the hole in the frame. For example,
(� e) [blame l] ≡ (blame l) e. The single-step relation on programs is then defined in the standard way using
evaluation contexts.

e1 −→ e2
E [e1] 7−→ E [e2]

7

Rule (4) is specialized to ιB , because there are no simple values s of type ?, to which ι? would apply. Rule (5)
appeals to coercion calculus reduction (of one or more steps) to normalize a coercion wrapping a simple value s. After
composing two coercions, we must normalize the resulting coercion to check if it represents a cast failure. In general,
the operational semantics of λ〈c〉 are parameterized over the definition of coercions and their reduction. By varying
that definition, we can change the blame-tracking strategy of the calculus, though one extra reduction rule is needed to
support eager blame tracking (see Sec. 5). For simplicity, this semantics does not merge coercions in tail-call position
as per Herman et al. [2007], so it is not yet fully space-efficient.

2.5 Space-efficient λ〈c〉

Full space-efficiency is achieved by composing coercions whenever possible, rather than waiting until a result is being
returned. To achieve this, we use a richer notion of evaluation contexts.

plain frames f ::= � e | v �
coerced contexts C ::= E [〈cw〉�]
plain contexts E ::= � | E [f] | C [f]

Then, reductions are split into plain reductions e −→ e and coercion reductions e
〈c〉−→ e.

(λx : T.e) v −→ [v/x] e(1)

(〈cw1 → cw2 〉s) v −→ 〈cw2 〉(s (〈cw1 〉v))(2)

〈cw1 〉〈c2〉e
〈c〉−→ 〈cw1 ◦ c2〉e(3)

〈ιB〉s
〈c〉−→ s(4)

〈c〉e 〈c〉−→ 〈cw〉e if c −→o+ cw(5)

〈Faill〉s 〈c〉−→ blame l(6)

f [blame l] −→ blame l(7)

Also, rules (5) and (3) are updated to apply for any coerced expression, not just for coerced simple values.
Finally, the single-step relation on programs is defined as three parts, rather than one:

e1 −→ e2
E [e1] 7−→ E [e2]

e1 −→ e2
C [e1] 7−→ C [e2]

e1
〈c〉−→ e2

E [e1] 7−→ E [e2]

According to these rules, plain reductions can happen in any context. Coercion reductions, on the other hand, can
only happen in a plain context, i.e. a context that does not have a coercion immediately pending.

2.6 Coercions are space efficient
If we consider the even-odd example again, we can compile its casts to coercions: 〈?⇐Bool〉l1 becomes Bool!,
〈Bool→ Bool⇐?→ Bool〉l2 becomes 〈Bool!→ ι〉, and 〈?→ Bool⇐Bool→ Bool〉l3 becomes 〈Bool?l3 → ι〉.
We can see the space savings in the resulting trace:

even(3,k) −→∗
odd(2,〈B!→ ι〉k) −→∗

even(1,〈B! ◦B?l3 → ι〉k) −→∗
odd(0,〈B!→ ι〉k) −→ . . .

Calling even with larger numbers repeats this sequence of the coercions without any further growth.

8

2.7 Implementing Coercions is Hard
Coercions cleanly and elegantly specify space-efficient cast semantics, which is one reason they were used to charac-
terize the design space of casts in [Siek et al., 2009]. However, they are difficult to implement directly for two reasons.
First, coercions are defined up to associativity, which can make some redexes harder to find, and can interfere with
developing a deterministic reduction strategy; second some coercion compositions remain inert, meaning that they do
not reduce, but composing with another coercion may warrant a reduction. These two properties interact with each
other in troublesome ways. Consider the coercion expression diagrammed below:

◦

◦

→?l ◦

→! c1 → c2

c3 → c4

The coercion expression→! ◦ (c1 → c2) is inert, so it does not reduce. However, the coercions→?l and→! could
reduce if composed directly, but in order to do so, the compositions must be reassociated first. The result, ι? → ι?
could then compose with c1 → c2. Meanwhile, the two arrow coercions c1 → c2 and c3 → c4 could also reduce, but
are also blocked by how they are associated. One might try to devise an ad hoc reassociation scheme or represent a
sequence of coercions as lists, but it would necessarily involve pairwise comparisons, bidirectional search, and splicing
into the middle of complex coercion expressions. In short, it remains a challenge to design a redex search and reduction
strategy that is complete in the face of inert compositions and associativity, yet simple enough to reason about and
implement correctly. This compares quite poorly with threesomes, whose composition operation has a straightforward
recursive implementation.

3 Threesomes for Lazy UD
This section presents a way to transform Lazy UD coercions into Lazy UD Threesomes using small easily verified
steps. We begin by observing some key properties of coercions, then use those properties to overcome the challenges
that associativity and inertness impose on implementing coercions. The strategy we apply and explain here is used
later to produce similar results for other coercion calculi.

3.1 Properties of Coercion Reduction
The rest of this work is predicated on several common properties of coercion calculi. We briefly discuss those proper-
ties for Lazy UD here.

Proposition 1. Reduction −→◦ preserves typing.

Proof. By cases on reduction.

Proposition 2. Reduction −→◦ is confluent

Proof. Among the reduction rules, there are only three pairs of rules that can interact with each other:

1. ιP ◦ c and c ◦ ιP ;

2. ιP ◦ c and c ◦ Faill;

3. Faill ◦ c with itself when c = C! ◦ (cw → cw) since we treat composition up to associativity.

In case of 1. and 2. each reduces to the same contractum: ιP in the first case, Faill in the second. In the case of
3., both reduction paths will arrive at Faill, one in one step and the other in two.

9

Proposition 3 (Siek [2011a]). Reduction −→◦ is strongly normalizing.

Proof. Consider as a size metric the lexicographic order on 1) the size of the coercion (raw number of nodes) and 2)
the number of function coercions. Then coercion reduction decreases that metric.

Proposition 4. c is normal iff c is a cw.

Proof. The only-if part is proven by induction on the typing judgment ` c : T2 ⇐ T1. The only interesting case is
c1 ◦ c2 which can be proven by cases, using the induction hypothesis to deduce that c1 = cw1 and c2 = cw2 .

The if part is proven by induction on the structure of cw.

These properties ensure there is a well-defined composition function for normal coercions.

Definition 1. Let NORMCT2⇐T1 = { c | ` c : T2 ⇐ T1 }. Then define normal composition as follows:

� : NORMCT3⇐T2 × NORMCT2⇐T1 → NORMCT3⇐T1

cw1 � cw2 = cw3 iff cw1 ◦ cw2 −→∗ cw3

Given this definition of composition for normal coercions, as well as the fact that cast compilation only produces
normal coercions, we can update the definition of λ〈c〉 to only consider normal coercions and normal composition.
Simply replace rules (5) and (3) with the rule:

(8a) 〈cw1 〉〈c2〉s
〈c〉−→ 〈cw1 � c2〉s

or in the fully space-efficient case:

(8b) 〈cw1 〉〈cw2 〉s −→ 〈cw1 � cw2 〉s

These rules perform both composition and normalization. However this change does not remove any dependence on
the coercion calculus and its difficulties, since � is defined in terms of coercion reduction: the composition function
exists, but it’s still hard to implement.

3.2 Supercoercions
As alluded to in the last section, the key to easily implementing coercions is to focus specifically on their normal
forms. In doing so we can replace the characterization of � above with an easily implemented notion of composition.
Our first step in this process is to replace the set of normal coercion expressions cw with a new set of composition-free
coercions c̈, one for each form that a normal coercion can take (Fig. 2). We call them supercoercions, since a single
supercoercion may stand for the composition of several traditional coercions.

Supercoercions correspond directly to normal coercions according to the following (reversible) mapping.

N [[·]] : SUPERC → NORMC Supercoercion Meaning

N [[ιP]] ≡ ιP
N [[Faill]] ≡ Faill

N [[Faill1Gl2]] ≡ Faill1 ◦G?l2

N [[G!]] ≡ G!

N [[G?l]] ≡ G?l

N [[Gll]] ≡ G! ◦G?l

N [[c̈1 → c̈2]] ≡ N [[c̈1]]→ N [[c̈2]]
N [[c̈1→↑c̈2]] ≡ →! ◦ (N [[c̈1]]→ N [[c̈2]])

N [[c̈1→↓
lc̈2]] ≡ (N [[c̈1]]→ N [[c̈2]]) ◦ →?l

N [[c̈1→l
lc̈2]] ≡ →! ◦ (N [[c̈1]]→ N [[c̈2]]) ◦ →?l

We call the mapping from normal coercions to supercoercions S[[·]], because later it will become different from the in-
verse ofN [[·]]. The type system for supercoercions was directly adapted from how the corresponding normal coercions
are typed.

10

l ∈ LABELS, B ∈ BASICTYPE, T ∈ TYPES, c̈ ∈ SUPERC
SUPERCT2⇐T1 = { c̈ | ` c̈ : T2 ⇐ T1 }
G ::= B |→
c̈ ::= Faill | FaillBl | Faill→l | G! | G?l | Gll | ιP | c̈→ c̈ | c̈→↑c̈ | c̈→↓lc̈ | c̈→llc̈

` ιP : P ⇐ P ` Faill : T2 ⇐ T1 ` Faill1Gl2 : T ⇐ ? ` B! : ?⇐ B

` B?l : B ⇐ ? ` Bll : ?⇐ ? `→! : ?⇐ ?→ ? `→?l : ?→ ?⇐ ? ` →ll : ?⇐ ?

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 → c̈2 : T1 → T4 ⇐ T2 → T3

` c̈1 : T2 ⇐ ? ` c̈2 : ?⇐ T3

` c̈1→↑c̈2 : ?⇐ T2 → T3

` c̈1 : ?⇐ T1 ` c̈2 : T4 ⇐ ?

` c̈1→↓lc̈2 : T1 → T4 ⇐ ?

` c̈1 : ?⇐ ? ` c̈2 : ?⇐ ?

` c̈1→llc̈2 : ?⇐ ?

Figure 2: LazyUD Supercoercions

Composing supercoercions Based on our understanding of normal coercions, we can easily define composition for
supercoercions. Moreover, that composition operation, which we call • is recursively defined. Much like the super-
coercion type system, composition is straightforwardly calculated from the definition of composition for traditional
coercions:take every pair of type-compatible supercoercions4, translate them to normal coercions, normalize the result,
and finally translate them back to supercoercions i.e.,

c̈1 • c̈2 = S[[N [[c̈1]]�N [[c̈2]]]]

In doing so, we rely on the fact that normal arrow coercions compose in a syntax-directed manner.

Proposition 5.
(cw1 → cw2)� (cw3 → cw4) = (cw3 � cw1)→ (cw2 � cw4)

Proof. Straightforward.

This fact gives us, for instance, that (c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4). Fig. 3 presents the full definition5

of •. The resulting function is well-defined by virtue of normalization (Prop. 3) and confluence (Prop. 2), which ensure
that � is well defined for normal coercions.

Version 1: Fig. 3.
Even though supercoercions are defined using normal coercions, they can be used to implement normalization for

arbitrary coercion expressions. To see this, recall that all every atomic coercion is also a supercoercion, so we can
compose them using •. Combining this with the translation from normal arrow coercions, we get a translation from
non-normal coercions to supercoercions:

S? : COERCET2⇐T1 → SUPERCT2⇐T1

S?[[c]] = c if c is atomic
S?[[c1 ◦ c2]] = S?[[c1]] • S?[[c2]]
S?[[c1 → c2]] = S?[[c1]]→ S?[[c2]]

For example, the problematic coercion from Sec. 2.7 translates directly to its corresponding supercoercion (assuming
c̈i = S?[[ci]]):

(→? • (→! • (c̈1 → c̈2))) • (c̈3 → c̈4)

=(→? • (c̈1→↑c̈2)) • (c̈3 → c̈4)

=(c̈1 → c̈2) • (c̈3 → c̈4)

=(c̈3 • c̈1)→ (c̈2 • c̈4)

4To construct and verify the completeness of this definition, we formalized it and checked coverage using Twelf.
5Yes it’s large, but don’t panic! Things get simpler below.

11

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

G! •G?l = Gll

B?l • B! = ιB
→?l• →! = ι? → ι?

B?l1 • Bll2 = B?l2

→?l1 • →ll2 = ι?→↓l2 ι?
Bll • B! = B!

→ll• →! = ι?→↑ι?
Bll1 • Bll2 = Bll2
→ll1 • →ll2 = ι?→ll2 ι?

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1 → c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→↓l(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→ll(c̈2 • c̈4)
(c̈1→↓lc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1→llc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)

(c̈1→↓l1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→↓l2 (c̈2 • c̈4)
(c̈1→ll1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→ll2 (c̈2 • c̈4)

→! • (c̈1 → c̈2) = (c̈1→↑c̈2)

→! • (c̈1→↓lc̈2) = (c̈1→llc̈2)

(c̈1 → c̈2)• →?l = (c̈1→↓lc̈2)

(c̈1→↑c̈2)• →?l = (c̈1→llc̈2)

→?l • (c̈1→↑c̈2) = (c̈1 → c̈2)

→?l1 • (c̈1→ll2 c̈2) = (c̈1→↓l2 c̈2)

→ll • (c̈1→↑c̈2) = (c̈1→↑c̈2)

→ll1 • (c̈1→ll2 c̈2) = (c̈1→ll2 c̈2)

(c̈1→↓lc̈2)• →! = (c̈1 → c̈2)

(c̈1→llc̈2)• →! = (c̈1→↑c̈2)

(c̈1→↓l1 c̈2) • →ll2 = (c̈1→↓l2 c̈2)

(c̈1→ll1 c̈2) • →ll2 = (c̈1→ll2 c̈2)

G1?
l •G2! = G1ll •G2! = Faill ifG1 6= G2

B?l • (c̈1→↑c̈2) = Bll • (c̈1→↑c̈2) = Faill

(c̈1→↓lc̈2) • B! = (c̈1→llc̈2) • B! = Faill

G1?
l1 •G2ll2 = G1ll1 •G2ll2 = Faill1G2l2 ifG1 6= G2

B?l1 • (c̈1→ll2 c̈2) = Bll1 • (c̈1→ll2 c̈2) = Faill1→l2

(c̈1→↓l1 c̈2) • Bll2 = (c̈1→ll1 c̈2) • Bll2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

Faill •G! = Faill • (c̈1 → c̈2) = Faill • (c̈1→↑c̈2) = Faill

Faill1 •G?l2 = Faill1 •Gll2 = Faill1Gl2

Faill1 • (c̈1→↓l2 c̈2) = Faill1 • (c̈1→ll2 c̈2) = Faill1→l2

Faill1Gl2 •G! = Faill1→l2 • (c̈1→↑c̈2) = Faill1

Faill1Gl2 •Gll3 = Faill1Gl3

Faill1→l2 • (c̈1→ll3 c̈2) = Faill1→l3

Faill1G1l2 •G2! = Faill1Bl2 • (c̈1→↑c̈2) = Faill2 ifG1 6= G2

Faill1G1l2 •G2ll3 = Faill2G2l3 ifG1 6= G2

Faill1Bl2 • (c̈1→ll3 c̈2) = Faill2→l3

Figure 3: Lazy UD Supercomposition, Version 1

12

Then, since we can always map supercoercions back to normal coercions, we immediately see that N [[S?[[c]]]] im-
plements a recursive normalizer for traditional coercions, overcoming our troubles with associativity and inertness.
However, instead of translating back and forth, we can simply use supercoercions as our cast representation through-
out. To do so, we update the translation from casts to directly produce supercoercions:

〈〈?⇐(T3 → T4)〉〉l = (?→ ?)! • (〈〈T3⇐?〉〉l → 〈〈?⇐T4〉〉l)

= 〈〈T3⇐?〉〉l→↑〈〈?⇐T4〉〉l

〈〈(T1 → T2)⇐?〉〉l = (〈〈?⇐T1〉〉l → 〈〈T2⇐?〉〉l) • (?→ ?)?l

= 〈〈?⇐T1〉〉l→↓l〈〈T2⇐?〉〉l

if some Ti 6= ?

The other cases are the same as for coercions. Note that source language casts never compile toBl, c̈→lc̈, or FaillGl:
these supercoercions only arise at runtime.

3.3 Simplifications
Supercoercions, while effective, are not particularly succinct. They consist of 11 forms, including the original coer-
cions. Furthermore, supercoercion composition requires 60 equations. This myriad of constructions and cases implies
a large number of data constructor tags compared to the small number of traditional coercions, as well as a number of
cases in the recursive composition definition. To address this blow-up, we apply a transformation-based approach to
refine our large but correct system into a more streamlined but equivalent counterpart [Burstall and Darlington, 1975].

In this section we apply several simple transformations that together cut down the the set of coercions and equations
dramatically. To our delight, the resulting simplified system is in fact nearly exactly the Threesomes of [Siek and
Wadler, 2010]. As such, threesomes are not just an alternative to coercions, but literally a streamlined implementation
strategy for them.

3.3.1 Primitive arrow coercions are redundant

Consider the set of primitive cast operators, B?, B!, and Bl, and the corresponding operators for arrow types. In the
following two analogous equations,

B?l •B! = ιB

→?l• →! = ι? → ι?

the equation for base types produces a single ιB , while the rule for arrows creates a complex arrow coercion. However,
this complex coercion is operationally equivalent to an identity coercion at type ?→ ?.

One may notice similar correspondences when looking at the other combinations of these basic operators. For
example, consider the equations

Bll •B! = B!

→ll• →! = ι?→↑ι?

Does the→! coercion correspond to the ι?→↑ι? coercion? Substituting for→! on the left side and using the definition
of • gives

→ll • (ι?→↑ι?) = ι?→↑ι?.

To confirm that this equivalence holds in general, we check (successfully) that replacing →! with ι?→↑ι? in every
equation preserves the result.

Applying the same logic to the other equations involving basic coercions, we find that the following transforma-
tions are sound:

1. Replace→! with ι?→↑ι?;

2. Replace→?l with ι?→↓lι?;

13

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

? B! • B?l = Bll
B?l • B! = ιB

B?l1 • Bll2 = B?l2

Bll • B! = B!

Bll1 • Bll2 = Bll2

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1 → c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→↓l(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→ll(c̈2 • c̈4)
(c̈1→↓lc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1→llc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)

(c̈1→↓l1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→↓l2 (c̈2 • c̈4)
(c̈1→ll1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→ll2 (c̈2 • c̈4)

? B1?
l • B2! = B1ll • B2! = Faill ifB1 6= B2

B?l • (c̈1→↑c̈2) = Bll • (c̈1→↑c̈2) = Faill

(c̈1→↓lc̈2) • B! = (c̈1→llc̈2) • B! = Faill

? B1?
l1 • B2ll2 = B1ll1 • B2ll2 = Faill1B2l2 ifB1 6= B2

B?l1 • (c̈1→ll2 c̈2) = Bll1 • (c̈1→ll2 c̈2) = Faill1→l2

(c̈1→↓l1 c̈2) • Bll2 = (c̈1→ll1 c̈2) • Bll2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

Faill • B! = Faill • (c̈1 → c̈2) = Faill • (c̈1→↑c̈2) = Faill

? Faill1 • B?l2 = Faill1 • Bll2 = Faill1Bl2

Faill1 • (c̈1→↓l2 c̈2) = Faill1 • (c̈1→ll2 c̈2) = Faill1→l2

? Faill1Bl2 • B! = Faill1→l2 • (c̈1→↑c̈2) = Faill1

? Faill1Bl2 • Bll3 = Faill1Bl3

Faill1→l2 • (c̈1→ll3 c̈2) = Faill1→l3

? Faill1Gl2 • B! = Faill1Bl2 • (c̈1→↑c̈2) = Faill2 ifG 6= B

? Faill1Gl2 • Bll3 = Faill2Bl3 ifG 6= B

Faill1Bl2 • (c̈1→ll3 c̈2) = Faill2→l3

Figure 4: LazyUD Supercomposition, Version 2

3. Replace→ll with ι?→llι?.

We can thus remove these coercions and their •-equations from further consideration. We update the translation from
normal coercions to supercoercions, e.g.:

S[[→?l]] ≡ ι?→↓lι?.
For compilation from casts to these supercoercions,

〈〈?⇐?→ ?〉〉l = ι?→↑ι? = 〈〈?⇐?〉〉l→↑〈〈?⇐?〉〉l,

which has the same form as the equation for all other cases of 〈〈?⇐T1 → T2〉〉l. Thus we can discard the special case
for 〈〈?⇐?→ ?〉〉l.

One downside of this transformation is that ι?→↑ι? is larger than a single→! coercion. Nevertheless, the former is
likely to arise at runtime anyway, the size difference is minor, and the system still guarantees bounded space efficiency
for casts.

Version 2: Fig. 4. Updated equations are marked with a red star (?).

14

3.3.2 Merge base type coercions into type-polymorphic counterparts

The simple base type coercions can be grouped based on their indices. For instance, B! and ιB , are both indexed on a
single base type B, while the coercions B?l and Bll are indexed on a base type B and a blame label l. Looking more
closely at these pairings, we see that they can be differentiated based on their typing: for the first two, ` B! : ? ⇐ B

while ` ιB : B ⇐ B, while for the second two, ` B?l : B ⇐ ? while ` Bll : ? ⇐ ?. As such, these four uni-typed
coercions can be replaced with two “ad-hoc polymorphic” coercions so long as the type context in which they are used
is fully known. We define two coercions which simply carry the indices from the prior coercions: B, and Bl. Each
can be typed according to two typing rules:

` B : ?⇐ B ` B : B ⇐ B
` Bl : B ⇐ ? ` Bl : ?⇐ ?

Next, we define the meaning of these polymorphic supercoercions in terms of the original ones. Since the typings
matter, however, we define the translation over type derivations D:

N ′
[[
` B : ?⇐ B

]]
= ` B! : ?⇐ B

N ′
[[
` B : B ⇐ B

]]
= ` ιB : B ⇐ B

N ′
[[
` Bl : B ⇐ ?

]]
= ` B?l : B ⇐ ?

N ′
[[
` Bl : ?⇐ ?

]]
= ` Bll : ?⇐ ? .

N ′[[·]] is defined recursively as the identity for the other supercoercion typing rules, which carry over directly to this
new set of supercoercions. This simplification retains a direct correspondence, though now specifically between typing
derivations for supercoercions. We consider this a first correctness criterion.

Proposition 6. N ′[[·]] is invertible.

Proof. Immediate.

In fact, the original transformation from normal coercions to supercoercions N [[·]] could be expressed in terms of
typing derivations, but this would have been superfluous since every coercion corresponded to a unique derivation.

However, we haven’t fully established correctness. Sharing indices is not sufficient grounds for reducing the
original coercions to these new coercions. We must check that the equations for • are preserved by this interpretation.
For example, consider the two supercoercion composition equations:

B! •B?l = Bll, ιB •B?l = B?l

Based on our new supercoercion interpretation, the analogous composition operator over the simpler supercoer-
cions, •′, needs only one equation to cover both of them:

B •′ Bl = Bl

However, since composition is defined over type-compatible pairs of coercions, it can in fact be viewed as defined
over pairs of typing derivations. When viewed in this light, we recover the two equations over two different pairs of
type derivations:

` B : ?⇐ B •′ ` Bl : B ⇐ ? = ` Bl : ?⇐ ?

` B : B ⇐ B •′ ` Bl : B ⇐ ? = ` Bl : B ⇐ ?

Viewed this way, the supercoercion derivations before this transformation correspond exactly to this new set of su-
percoercion type derivations. However, to our benefit, composition can be oblivious to the relevant typing derivations:
the resulting coercion, Bl, stays the same. That means that we can erase the type derivations and still have a well-
defined composition function. This is our second correctness criterion: that • is oblivious to type derivations. The
following proposition states this more formally. In it, the notation D :: ` c̈ : T1 ⇐ T2 means that D is a derivation of
` c̈ : T1 ⇐ T2.

15

Proposition 7. Suppose that:

1. D1 :: ` c̈1 : T3 ⇐ T2;

2. D′1 :: ` c̈1 : T ′3 ⇐ T ′2;

3. D2 :: ` c̈2 : T2 ⇐ T1; and

4. D′2 :: ` c̈2 : T ′2 ⇐ T ′1.
Then
(D1 •′ D2) :: ` c̈3 : T3 ⇐ T1 iff (D′1 •′ D′2) :: ` c̈3 : T ′3 ⇐ T ′1.

Proof. Straightforward induction on derivations.

The important point is that the result of composition, c̈3 stays the same regardless of the type derivation, so the •
doesn’t have to worry about the types. To verify that Prop. 7 holds, we simply substitute our new supercoercions into
the old equations and verify that the result, at the relevant type, corresponds to the result in the original equation.

Note that since ιB has been replaced in the new system, ι? is the only primitive identity coercion carried over from
the original system. Thus, the relevant equations are specialized:

c̈ •′ ι? = c̈, ι? •′ c̈ = c̈

From here on, we drop the ′s, and simply reuse • and c̈ at each simplification. We can update cast compilation to
reflect this simplification. Notice that two different casts now compile to the same thing:

〈〈?⇐B〉〉l = 〈〈B⇐B〉〉l = B.

Version 3: Fig. 5.

3.3.3 Merge arrow coercions into type-polymorphic counterparts

The analogous compression can be applied to complex arrow coercions, replacing c̈ → c̈ and c̈→↑c̈ with c̈→ c̈ and
replacing c̈→↓lc̈ and c̈→llc̈ with c̈→l c̈. The typing rules for these new supercoercions are as expected, e.g.,:

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 → c̈2 : T1 → T4 ⇐ T2 → T3

` c̈1 : ?⇐ T1 ` c̈2 : T4 ⇐ ?

` c̈1 →l c̈2 : T1 → T4 ⇐ ?

` c̈1 : T2 ⇐ ? ` c̈2 : ?⇐ T3

` c̈1 → c̈2 : ?⇐ T2 → T3

` c̈1 : ?⇐ ? ` c̈2 : ?⇐ ?

` c̈1 →l c̈2 : ?⇐ ?

This transformation is subject to the same correctness criteria as above and similarly decreases the set of superco-
ercions and equations for composition.

Version 4: Fig. 6.

3.3.4 Introduce Optional Data and Coalesce

After merging the base type coercions above, we end up with two distinct supercoercions, B, and Bl, which can also
be differentiated on type. However, they can’t be merged the same way because they do not both consist of the same
subcomponents. With a change of representation we can smooth over this difference.

First, we produce a new form of coercion which features optional labels,

p ::= ε | l

where ε indicates the absence of a label. Now we can merge both base type coercions into one coercion of the form
Bp. The typing rules are as expected, e.g.:

` Bε : ?⇐ B ` Bε : B ⇐ B

` Bl : B ⇐ ? ` Bl : ?⇐ ?

16

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

? ι? • c̈ = c̈ • ι? = c̈

? B • B = B

? B • Bl = Bl

? Bl • B = B

? Bl1 • Bl2 = Bl2

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1 → c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→↓l(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)
(c̈1→↑c̈2) • (c̈3→↓lc̈4) = (c̈3 • c̈1)→ll(c̈2 • c̈4)
(c̈1→↓lc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)
(c̈1→llc̈2) • (c̈3→↑c̈4) = (c̈3 • c̈1)→↑(c̈2 • c̈4)

(c̈1→↓l1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→↓l2 (c̈2 • c̈4)
(c̈1→ll1 c̈2) • (c̈3→ll2 c̈4) = (c̈3 • c̈1)→ll2 (c̈2 • c̈4)

? Bl1 • B2 = Faill ifB1 6= B2

? Bl • (c̈1→↑c̈2) = Faill

? (c̈1→↓lc̈2) • B = (c̈1→llc̈2) • B = Faill

? B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl1 • (c̈1→ll2 c̈2) = Faill1→l2

? (c̈1→↓l1 c̈2) • Bl2 = (c̈1→ll1 c̈2) • Bl2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill • B = Faill • (c̈1 → c̈2) = Faill • (c̈1→↑c̈2) = Faill

? Faill1 • Bl2 = Faill1Bl2

Faill1 • (c̈1→↓l2 c̈2) = Faill1 • (c̈1→ll2 c̈2) = Faill1→l2

? Faill1Bl2 • B = Faill1→l2 • (c̈1→↑c̈2) = Faill1

? Faill1Bl2 • Bl3 = Faill1Bl3

Faill1→l2 • (c̈1→ll3 c̈2) = Faill1→l3

? Faill1Gl2 • B = Faill1Bl2 • (c̈1→↑c̈2) = Faill2 ifG 6= B

? Faill1Gl2 • Bl3 = Faill2Bl3 ifG 6= B

Faill1Bl2 • (c̈1→ll3 c̈2) = Faill2→l3

Figure 5: LazyUD Supercomposition, Version 3

17

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

B • B = B

B • Bl = Bl

Bl • B = B

Bl1 • Bl2 = Bl2

? c̈1 → c̈2 • c̈3 → c̈4 = (c̈3 • c̈1)→ (c̈2 • c̈4)
? c̈1 → c̈2 • c̈3 →l c̈4 = (c̈3 • c̈1)→l (c̈2 • c̈4)
? c̈1 →l c̈2 • c̈3 → c̈4 = (c̈3 • c̈1)→ (c̈2 • c̈4)

? c̈1 →l1 c̈2 • c̈3 →l2 c̈4 = (c̈3 • c̈1)→l2 (c̈2 • c̈4)

Bl1 • B2 = Faill ifB1 6= B2

? Bl • c̈1 → c̈2 = Faill

? c̈1 →l c̈2 • B = Faill

B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl1 • c̈1 →l2 c̈2 = Faill1→l2

? c̈1 →l1 c̈2 • Bl2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill • B = Faill • c̈1 → c̈2 = Faill

Faill1 • Bl2 = Faill1Bl2

? Faill1 • c̈1 →l2 c̈2 = Faill1→l2

? Faill1Bl2 • B = Faill1→l2 • c̈1 → c̈2 = Faill1

Faill1Bl2 • Bl3 = Faill1Bl3

? Faill1→l2 • c̈1 →l3 c̈2 = Faill1→l3

? Faill1G1l2 • B2 = Faill1Bl2 • c̈1 → c̈2 = Faill2 ifG1 6= B2

Faill1G1l2 • Bl32 = Faill2B2l3 ifG1 6= B2

? Faill1Bl2 • c̈1 →l3 c̈2 = Faill2→l3

Figure 6: LazyUD Supercomposition, Version 4

18

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

? Bp1 • Bp2 = Bp2

? (c̈1 →p1 c̈2) • (c̈3 →p2 c̈4) = (c̈3 • c̈1)→p2 (c̈2 • c̈4)

? Ql1 •Q
ε
2 = Faill ifQ1 →← Q2

? Q
l1
1 •Q

l2
2 = Faill1dQ2el2 ifQ1 →← Q2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill •Qε = Faill

? Faill1 •Ql2 = Faill1dQel2

? Faill1dQel2 •Qε = Faill1

? Faill1dQel2 •Ql3 = Faill1dQel3

? Faill1G1l2 •Qε2 = Faill2 if dQ2e 6= G1

? Faill1G1l2 •Ql32 = Faill2dQ2el3 if dQ2e 6= G1

Figure 7: LazyUD Supercomposition, Version 5

Similarly, we can merge arrow casts into the form c̈→p c̈. We can now refer to atomic and arrow coercions uniformly

Q := B | c̈→ c̈

Then Qp is essentially an optionally labeled type constructor: either an atomic Bp or an arrow c̈→p c̈. At this point
we are close to uncovering our labeled types. In direct analogy with non-? types, we use dQe to get Q’s topmost
constructor, and Q1 →← Q2 to say that two coercions have incompatible top-level constructors.

Introducing optional labels further simplifies our definition of composition. For example, the four equations:

B •B = B, B •Bl = Bl,

Bl •B = B, Bl1 •Bl2 = Bl2

Become one equation:
Bp1 •Bp2 = Bp2

Notice that the function need not even inspect p2: it simply copies it over to the result. The same thing happens with
arrow coercions.

Version 5: Fig. 7.
Using the same strategy, we merge the Faill and FaillGl forms by making theG and l pair into an optional failure

“type” annotation.

H ::= ε | Gl

c̈ ::= ... | FaillH

To complete our simplification, we define a helper function [·] that translates a labeled typeQp into an optional failure
annotation.

[Qε] = ε[
Bl
]

= Bl[
c̈1 →l c̈2

]
=→ l

This helper lets us take advantage of both labeled non-? types Qp and labeled failure types together. This completes
our simplification process, yielding the labeled types and composition operator of Fig. 8.

The resulting labeled types closely mirror those of [Siek and Wadler, 2010], but for a few cosmetic differences:

19

l ∈ LABELS, B ∈ BASICTYPE, T ∈ TYPES, c̈ ∈ SUPERC
SUPERCT2⇐T1 = { c̈ | ` c̈ : T2 ⇐ T1 }
G ::= B |→
H ::= ε | Gl
p ::= ε | l

Qp ::= Bp | c̈→p c̈

c̈ ::= ι? | FaillH | Qp

` ι? : ?⇐ ? ` Faillε : T2 ⇐ T1 ` Faill1Gl2 : T ⇐ ?

` Bε : B ⇐ B ` Bε : ?⇐ B ` Bl : B ⇐ ? ` Bl : ?⇐ ?

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 →ε c̈2 : T1 → T4 ⇐ T2 → T3

` c̈1 : T2 ⇐ ? ` c̈2 : ?⇐ T3

` c̈1 →ε c̈2 : ?⇐ T2 → T3

` c̈1 : ?⇐ T1 ` c̈2 : T4 ⇐ ?

` c̈1 →l c̈2 : T1 → T4 ⇐ ?

` c̈1 : ?⇐ ? ` c̈2 : ?⇐ ?

` c̈1 →l c̈2 : ?⇐ ?

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Composition

ι? • c̈ = c̈ • ι? = c̈
Bp1 • Bp2 = Bp2

(c̈1 →p1 c̈2) • (c̈3 →p2 c̈4) = (c̈3 • c̈1)→p2 (c̈2 • c̈4)

? Q
l1
1 •Q

p2
2 = Fail

l1

[
Q
p2
2

]
ifQ1 →← Q2

? c̈ • Faill1H = Faill1H

? Faill •Qp = Faill[Q
p]

? Faill1dQel2 •Qp3 = Faill1[Q
p3]

? Faill1Gl2 •Qp = Faill2[Q
p] if dQe 6= G

where[
Q
ε]

= ε[
B
l
]
= Bl[

c̈1 →l
c̈2
]
=→l

dBe = B

dc̈→ c̈e =→ .

Figure 8: LazyUD Labeled Types

20

1. In general c̈ corresponds directly to labeled types P

2. Our ι? corresponds to the labeled type ∗;

3. The Bp and c̈→p c̈ coercions are the same;

4. FaillH corresponds to ⊥lGp, with H playing the role of Gp. In the original Threesomes, only the label p was
optional. Our derivation reveals, however, that G is only needed if an actual label is present.

3.3.5 Adapting λ〈c〉 to Threesomes

Having recast coercions first as supercoercions and then as labeled types, we return to implementing the cast calculus
using them. The resulting system is a direct remapping of λ〈c〉, but now with labeled types. As we see, the resulting
calculus, called λ〈c̈〉, needs type information for the labeled types. As such, we take our labeled types ` c̈ : T2 ⇐ T1

and present them as threesomes 〈T2
c̈⇐=T1〉 . Thus we see that λ〈c̈〉 is a threesome calculus. The language replaces

coercions from λ〈c〉 with threesomes. The type rule for casted expressions is as follows:

` c̈ : T2 ⇐ T1 Γ ` e : T1

Γ ` 〈T2
c̈⇐=T1〉 e : T2

Its reduction rules are as follows:

(λx : T.e) v −→ [v/x] e(1)

(〈T1 → T2
c̈1→εc̈2⇐= T3 → T4〉 s) v −→ 〈T2

c̈2⇐=T4〉 (s (〈T3
c̈1⇐=T1〉 v))(2)

〈B Bε⇐=B〉 s −→ s(4)

〈T2
Faillε⇐= T1〉 s −→ blame l(6)

f [blame l] −→ blame l(7)

〈T3
c̈1⇐=T2〉 〈T2

Qε⇐=T1〉 s −→ 〈T3
c̈1•Qε⇐= T1〉 s if (Q,T1, T2) 6= (B,B,B)(8)

To produce these rules, we simply take the original λ〈c〉 rules, replace rule (3) and (5) with (8), as discussed in
Sec. 3.1, and reconstitute the coercion-based rules with their direct threesome analogues, according to our correspon-
dence. The type information provided by the outer types is specifically needed to support rule (4). In particular, we
need to differentiate 〈B Bε⇐=B〉 s, which corresponds to 〈ιB〉s and is a redex, from 〈? Bε⇐=B〉 s, which corresponds
to 〈B!〉s and is a ?-wrapped value. Despite the need for type information, the polymorphic simplifications above are
still a win because rules (4) and (8) are the only reduction rules that need ever inspect an outer type. The rest simply
pass along components without inspection. Furthermore, the side condition on the rule (8) is only there to ensure
deterministic reduction. Without it, reduction is nondeterministic but always produces the same result.

We can similarly reconstitute the fully space-efficient λ〈c〉 as a threesome calculus, after combining rules (3) and
(5) as before.

(λx : T.e) v −→ [v/x] e(1)

(〈T1 → T2
c̈1→εc̈2⇐= T3 → T4〉 s) v −→ 〈T2

c̈2⇐=T4〉 (s (〈T3
c̈1⇐=T1〉 v))(2)

〈B Bε⇐=B〉 s 〈c〉−→ s(4)

〈Faill〉s 〈c〉−→ blame l(6)

f [blame l] −→ blame l(7)

〈T3
c̈1⇐=T2〉 〈T2

c̈2⇐=T1〉 s
〈c〉−→ 〈T3

c̈1•c̈2⇐= T1〉 s(8)

In this variant, rule (8) has no side condition: it simply combines strings of labeled types as needed.

21

To support compilation from λ〈T 〉 to λ〈c̈〉, we update cast compilation to produce labeled types. Doing so simply
involves composing the original cast compilation function with our final S[[·]] function.

〈〈?⇐?〉〉l = ι?

〈〈?⇐B〉〉l = 〈〈B⇐B〉〉l = Bε

〈〈B⇐?〉〉l = Bl

〈〈T1 → T2⇐T3 → T4〉〉l = 〈〈T3⇐T1〉〉l →ε 〈〈T2⇐T4〉〉l

〈〈?⇐T1 → T2〉〉l = 〈〈T1⇐?〉〉l →ε 〈〈?⇐T2〉〉l

〈〈T1 → T2⇐?〉〉l = 〈〈?⇐T1〉〉l →l 〈〈T2⇐?〉〉l

〈〈T1⇐T2〉〉l = Fail
lε if T1 →← T2

Then, a source cast 〈T2⇐T1〉l is translated to the threesome 〈T2
〈〈T2⇐T1〉〉l⇐= T1〉 .

Alternative: Late Unwrapping As an alternative to threesomes with outer types, one can restructure the λ〈c〉
calculus so that the labeled types alone are sufficient. The key insight to achieve this is that discharging the ιB case
only matters when a base type value is observed. λ〈c〉 has no constructs for observing base type values, but suppose
an operator f(k) that consumes base-type values. In the original coercion calculus, we could have chosen to delay the
unwrapping of the casted expression 〈ιB〉k until f is applied to it. Carrying this idea forward to λ〈c̈〉, we present a
new semantics called Latent λ〈c̈〉, which embodies this approach. The language has as its cast equivalents expressions
〈c̈〉e, and delays unwrapping all Bε coercions.

(λx : T.e) v −→ [v/x] e(1)

(〈c̈1 →ε c̈2〉s) v −→ 〈c̈2〉(s (〈c̈1〉v))(2)

f(〈Bε〉s) −→ f(s)(4)

〈Faillε〉s −→ blame l(6)

f [blame l] −→ blame l(7)

〈c̈1〉〈c̈2〉s −→ 〈c̈1 • c̈2〉s(8)

Note that a Bε wrapper may be composed with another coercion via the third reduction rule. In well-typed programs,
this always yields the coercion c̈1 as the result, in accordance with ιB’s semantics.

3.3.6 Summary

Starting with the Lazy UD coercion calculus, we produced a notion of supercoercions, which provides an effective
implementation of coercion reduction at the cost of a large number of constructions and cases. Then, by simple
stepwise refinement, we have transformed the supercoercions and composition equations into a much smaller system
of labeled types, with 3 constructions, 9 equations, and 2 simple helper functions. In this system, every labeled type
except for ι? represents multiple supercoercions. Each simplification took a small step and was easy verify.

Re-constructing the Threesome Calculus sheds new light on the relationship between Lazy UD coercions and
threesomes, but the key benefit of this process is that it gave us a strategy for developing threesomes corresponding
to new blame tracking strategies. In the remainder of this paper, we retrace the same steps to develop new threesome
semantics.

4 Lazy D Threesomes
The Lazy D blame strategy retains the laziness of the Blame Calculus (i.e., Lazy UD), but distributes blame in a
manner that’s consistent with the traditional notion of subtyping, treating ? as the top of the subtype hierarchy. In
this section we develop threesomes that implement the Lazy D strategy. To get a Lazy D threesome calculus, simply
replace the Lazy UD labeled types in λ〈c̈〉 with their Lazy D counterparts.

22

G ::= B | T → T
P ::= B | ?
c̈ ::= Faill | FaillGl | G! | G?l | Gll | ιP | c̈→ c̈

| c̈ →
(T→T)l
↓ c̈ | c̈ T→T

↑ → c̈ | c̈ T→T
↑ →

(T→T)l
↓ c̈

` Faill : T2 ⇐ T1 ` Faill1Gl2 : T ⇐ ? ` G! : ?⇐ G ` G?l : G⇐ ? ` Gll : ?⇐ ?

` ιP : P ⇐ P

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 → c̈2 : T1 → T4 ⇐ T2 → T3

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1
T1→T4
↑ →

(T2→T3)l

↓ c̈2 : ?⇐ ?

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1
T1→T4
↑ → c̈2 : ?⇐ T2 → T3

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 →
(T2→T3)l

↓ c̈2 : T1 → T4 ⇐ ?

Figure 9: Lazy D Supercoercions

The Lazy D coercion calculus extends the Lazy UD calculus by adding primitive injections and projections at
every type

c ::= ... | T?l | T !

In fact, the UD coercions→! and→?l correspond exactly to the (?→ ?)! and (?→ ?)?l coercions.
In Lazy UD, a cast between a function type and ? compiles to a complex coercion to ? → ? combined with a

primitive cast between ? and ?→ ?. Under Lazy D, in contrast, this is replaced with primitive coercions:

〈〈?⇐T1 → T2〉〉l = (T1 → T2)!

〈〈T1 → T2⇐?〉〉l = (T1 → T2)?l

Now the translations for all injections to and projections from ? have the same structure. The reduction rules for Lazy
D must address how complex injections interact with complex projections. This is handled by the following reduction
rule:

T1?l ◦ T2! −→ 〈〈T1⇐T2〉〉l

This rule subsumes all of the Lazy UD rules that involve injections meeting projections. For Lazy D, however, this
rule must be stated in this general format because there are an unbounded number of them. In Lazy UD, the rules can
be specialized with respect to the structure of the coercions involved.

The syntax of normal Lazy D coercions differs from Lazy UD specifically in that the primitive cast indices G are
extended to be exactly the non-? types:

G ::= B | T → T

Lazy D Supercoercions Taking the above differences into account, we can define a set of Lazy D supercoercions
(Fig. 9):

The main difference in the Lazy D calculus is that primitive casts are indexed by full-fledged types and the complex
arrow coercions have additional type indices. The origin of these arrow-coercion type indices can be seen by looking
at their translation back to normal Lazy D coercions:

N [[c̈1 →
(T1→T2)l

↓ c̈2]] = (N [[c̈1]]→ N [[c̈2]]) ◦ (T1 → T2)?l

N [[c̈1
T1→T2
↑ → c̈2]] = (T1 → T2)! ◦ (N [[c̈1]]→ N [[c̈2]])

N [[c̈1
T1→T2
↑ →

(T3→T4)l

↓ c̈2]] = (T1 → T2)! ◦ (N [[c̈1]]→ N [[c̈2]]) ◦ (T3 → T4)?l

The type indices on arrow coercions correspond to leading projections and trailing injections between arrow types
and ?. Now that any arrow type can be immediately projected to or injected from ?, we must keep track of which type
is specifically intended. This affects how blame propagates among coercions.

23

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

G! •G?l = Gll

B?l • B! = ιB
(T1 → T2)?

l • (T3 → T4)! = 〈〈T3⇐T1〉〉l → 〈〈T2⇐T4〉〉l
B?l1 • Bll2 = B?l2

(T1 → T2)?
l1 • (T3 → T4)ll2 = 〈〈T3⇐T1〉〉l1 →

(T3→T4)l2
↓ 〈〈T2⇐T4〉〉l1

Bll1 • B! = B!

(T1 → T2)ll • (T3 → T4)! = 〈〈T3⇐T1〉〉l
T1→T2

↑ → 〈〈T2⇐T4〉〉l
Bll1 • Bll2 = Bll2

(T1 → T2)ll1 • (T3 → T4)ll2 = 〈〈T3⇐T1〉〉l
T1→T2

↑ →
(T3→T4)l2

↓ 〈〈T2⇐T4〉〉l

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) = (c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) = (c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) = (c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

(T1 → T2)! • (c̈1 → c̈2) = c̈1
T1→T2

↑ → c̈2

(T1 → T2)! • (c̈1 →
(T3→T4)l

↓ c̈2) = c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2

(c̈1 → c̈2) • (T1 → T2)?
l = c̈1 →

(T1→T2)l
↓ c̈2

(c̈1
T1→T2

↑ → c̈2) • (T3 → T4)?
l = c̈1

T1→T2
↑ →

(T3→T4)l
↓ c̈2

(T1 → T2)?
l • (c̈1

T3→T4
↑ → c̈2) = (c̈1 • 〈〈T3⇐T1〉〉l)→ (〈〈T2⇐T4〉〉l • c̈2)

(T1 → T2)?
l • (c̈1

T3→T4
↑ →

(T5→T6)l2
↓ c̈2) = (c̈1 • 〈〈T3⇐T1〉〉l) →

(T5→T6)l2
↓ (〈〈T2⇐T4〉〉l • c̈2)

(T1 → T2)ll • (c̈1
T3→T4

↑ → c̈2) = (c̈1 • 〈〈T3⇐T1〉〉l)
T1→T2

↑ → (〈〈T2⇐T4〉〉l • c̈2)

(T1 → T2)ll1 • (c̈1
T3→T4

↑ →
(T5→T6)l2

↓ c̈2) = (c̈1 • 〈〈T3⇐T1〉〉l1)
T1→T2

↑ →
(T5→T6)l2

↓ (〈〈T2⇐T4〉〉l1 • c̈2)

c̈1 →
(T1→T2)l

↓ c̈2 • (T3 → T4)! = (〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l)

c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2 • (T5 → T6)! = (〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l)

c̈1 →
(T1→T2)l1

↓ c̈2 • (T3 → T4)ll2 = (〈〈T3⇐T1〉〉l1 • c̈1) →
(T3→T4)l2

↓ (c̈2 • 〈〈T2⇐T4〉〉l1)

c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2 • (T5 → T6)ll2 = (〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T5→T6)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1)

Figure 10: Lazy D Supercoercions Version 1, Part 1

24

G1?
l •G2! = G1ll •G2! = Faill ifG1 →← G2

B?l • (c̈1
T1→T2

↑ → c̈2) = Bll • (c̈1
T1→T2

↑ → c̈2) = Faill

(c̈1 →
(T1→T2)l

↓ c̈2) • B! = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B! = Faill

G1?
l1 •G2ll2 = G1ll1 •G2ll2 = Faill1G2l2 ifG1 →← G2

B?l1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Bll1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Faill1(T3→T4)l2

(c̈1 →
(T1→T2)l1

↓ c̈2) • Bll2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bll2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

Faill •G! = Faill • (c̈1 → c̈2) = Faill • c̈1
T1→T2

↑ → c̈2 = Faill

Faill1 •G?l2 = Faill1 •Gll2 = Faill1Gl2

Faill1 • c̈1 →
(T3→T4)l2

↓ c̈2 = Faill1 • c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2 = Faill1(T3→T4)l2

Faill1Bl2 • Bll3 = Faill1Bl3

Faill1(T1→T2)l2 • (T5 → T6)ll3 = Faill1(T1→T2)l2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill1(T5→T6)l3

Faill1G1l2 •G2! = Faill1(T1→T2)l2 • c̈1
T3→T4

↑ → c̈2 = Faill1 ifG1 ↔ G2

Faill1G1l2 •G2! = Faill1Bl2 • c̈1
T1→T2

↑ → c̈2 = Faill2 ifG1 →← G2

Faill1G1l2 •G2ll3 = Faill2G2l3 ifG1 →← G2

Faill1Bl2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill2(T5→T6)l3

Figure 11: Lazy D Supercomposition Version 1, Part 2

Using the same technique as in Sec 3.2, we can define supercoercion composition (Fig. 10 and 11). The directly
calculated composition function for Lazy D is more complex than that for Lazy UD because of the intervening type
projections and injections that must be compiled and combined for arrow coercions. For example,

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4
↑ → c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

The equivalent Lazy UD equation lacks the cast compilation parts.

4.0.7 Simplification

We can apply the same general approach as in Sec. 3.3 to simplify the definition of supercoercion composition. We
find that simplifying primitive coercions is analogous, but simplifying arrow coercions requires greater care and some
auxiliary machinery.

Arrow type primitives are redundant Among the Lazy UD coercions, the arrow primitives →!, →?l, and →ll
were found to be encodable using the arrow coercions. The same is true for Lazy D, though the encoding requires a
little more machinery. Recall that the original inspiration for this transformation was based in how an identity coercion
for ? → ? could be represented as ι? → ι?, and each of the above three casts corresponds to one of the other arrow
supercoercion constructors. This construction generalizes to arbitrary arrow types. To see how, observe that:

(T1 → T2)?l • (T1 → T2)! = 〈〈T1⇐T1〉〉l → 〈〈T2⇐T2〉〉l.

Now define I(T) = 〈〈T⇐T 〉〉l for arbitrary l, or directly:

I(P) = ιP

I(T1 → T2) = I(T1)→ I(T2)

Henglein [1994] proves that a coercion constructed from primitive identity coercions is equivalent to an identity
coercion at a higher type. With this, we can redefine primitive arrow coercions as expected:

1. Replace (T1 → T2)! with I(T1)
T1→T2
↑ → I(T2);

25

2. Replace (T1 → T2)?l with I(T1) →
(T1→T2)l

↓ I(T2);

3. Replace (T1 → T2)ll with I(T1)
T1→T2
↑ →

(T1→T2)l

↓ I(T2).

As with Lazy UD, this change makes some supercoercions larger, but these forms often arise at runtime as casts
interact anyway, so the size benefit of the original form is short-lived. Furthermore, casts retain the same asymptotic
space bound at run-time, bounded by the size of the types that appear in the program.

Version 2: Fig. 12.

Simplify base type coercions The exact same simplification for Lazy UD can be performed for Lazy D, first replac-
ing the four base type coercions ιB , B!, B?l, and Bll with B and Bl, and then merging B and Bl into the single Bp

coercion.
Version 3: Fig. 13.

Simplify arrow type coercions Under Lazy D, arrow supercoercions cannot be merged according to shared common
structure. The reason for this is that every variation of arrow cast differs with respect to its associated arrow types and
possibly blame label. However, it is possible to merge the structure of these casts by internalizing the associated arrow
types and blame labels as optional parameters. By introducing optional structures, we can again unify the structure of
arrow supercoercions.

H ::= ε | Gl
S ::= ε | T → T

Once again, we introduce an optional G-l pair, which will cover the projection label (T → T)l for arrow casts, as
well as the projections on some failure coercions. Now, though, we must also add the optional arrow type S, as the
label for arrow casts with injections to ?. With these changes arrow casts take the following unified form:

c̈ S→H c̈

Version 4: Fig. 14.
Once again, we merge the two Fail supercoercions as FaillH , and introduce the Lazy D analogues of [·] and d·e

to simplify the definition of composition.

[Qε] = ε[
Bl
]

= Bl[
c̈1

S→Gl c̈2
]

= Gl

dBpe = B

dc̈1 S→H c̈2e =→

We use dT e as the analogous operation for types.
We again distinguish the two kinds of supercoercions treated by these operators, which again comprise types with

optional labels:
Q ::= Bp | c̈ S→H c̈

Unlike the Lazy UD case, we can’t quite refer to these labeled types uniformly as Qp, since the arrow coercion
annotation H has both a type G and a label l. Nonetheless, we can unambiguously say Qε to mean either Bε or
c̈ S→ε c̈.

This concludes the simplification process, yielding the Lazy D labeled types in Fig. 15.
The Lazy D supercoercions are more complex than their Lazy UD counterparts. This is a side-effect of Lazy

D’s larger space of coercions. In fact, if we restrict G to only B and ? → ?, it is easy to check that the equations
relate directly to those for Lazy UD. For example, the second and third equations, which characterize how arrow
supercoercions interact with one another, collapse into one equation, since the intermediate compiled casts (e.g. 〈〈T3⇐
T2〉〉l1) become ι?.

26

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

? B! • B?l = Bll
B?l • B! = ιB

B?l1 • Bll2 = B?l2

Bll1 • B! = B!

Bll1 • Bll2 = Bll2

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) = (c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) = (c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) = (c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

? B1?
l • B2! = B1ll • B2! = Faill ifB1 6= B2

? B1?
l1 • B2ll2 = B1ll1 • B2ll2 = Faill1B2l2 ifB1 6= B2

B?l • (c̈1
T1→T2

↑ → c̈2) = Bll • (c̈1
T1→T2

↑ → c̈2) = Faill

B?l1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Bll1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Faill1(T3→T4)l2

(c̈1 →
(T1→T2)l

↓ c̈2) • B! = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B! = Faill

(c̈1 →
(T1→T2)l1

↓ c̈2) • Bll2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bll2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill • B! = Faill • (c̈1 → c̈2) = Faill • c̈1
T1→T2

↑ → c̈2 = Faill

? Faill1 • B?l2 = Faill1 • Bll2 = Faill1Bl2

Faill1 • c̈1 →
(T3→T4)l2

↓ c̈2 = Faill1 • c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2 = Faill1(T3→T4)l2

? Faill1Bl2 • B! = Faill1(T1→T2)l2 • c̈1
T3→T4

↑ → c̈2 = Faill1

Faill1Bl2 • Bll3 = Faill1Bl3

? Faill1(T1→T2)l2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill1(T5→T6)l3

? Faill1B1l2 • B2! = Faill1Bl2 • c̈1
T1→T2

↑ → c̈2 = Faill2 ifB1 6= B2

? Faill1B1l2 • B2ll3 = Faill2B2l3 ifB1 6= B2

Faill1Bl2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill2(T5→T6)l3

Figure 12: Lazy D Supercomposition, Version 2

27

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

? ι? • c̈ = c̈ • ι? = c̈

? Bp1 • Bp2 = Bp2

(c̈1 → c̈2) • (c̈3 → c̈4) = (c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) = (c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) = (c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) = (c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) = (c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

? Bl1 • B
ε
2 = Faill ifB1 6= B2

? B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl • (c̈1
T1→T2

↑ → c̈2) = Faill

? Bl1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Faill1(T3→T4)l2

? (c̈1 →
(T1→T2)l

↓ c̈2) • Bε = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bε = Faill

? (c̈1 →
(T1→T2)l1

↓ c̈2) • Bl2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bl2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill • Bε = Faill • (c̈1 → c̈2) = Faill • c̈1
T1→T2

↑ → c̈2 = Faill

? Faill1 • Bl2 = Faill1Bl2

? Faill1 • c̈1 →
(T3→T4)l2

↓ c̈2 = Faill1 • c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2 = Faill1(T3→T4)l2

? Faill1Bl2 • Bε = Faill1(T1→T2)l2 • c̈1
T3→T4

↑ → c̈2 = Faill1

? Faill1Bl2 • Bl3 = Faill1Bl3

Faill1(T1→T2)l2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill1(T5→T6)l3

? Faill1B1l2 • Bε2 = Faill1Bl2 • c̈1
T1→T2

↑ → c̈2 = Faill2 ifB1 6= B2

? Faill1B1l2 • Bl32 = Faill2B2l3 ifB1 6= B2

Faill1Bl2 • c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2 = Faill2(T5→T6)l3

Figure 13: Lazy D Supercomposition, Version 3

28

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

Bp1 • Bp2 = Bp2

? (c̈1
S→ε c̈2) • (c̈3 ε→H c̈4) = (c̈3 • c̈1) S→H (c̈2 • c̈4)

? (c̈1
S→(T1→T2)l1 c̈2) • (c̈3 T3→T4→H c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l1 • c̈1) S→H (c̈2 • 〈〈T2⇐T4〉〉l1 • c̈4)

Bl1 • B
ε
2 = Faill ifB1 6= B2

B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl • (c̈1 T1→T2→ε c̈2) = Faill

? Bl1 • (c̈1 T1→T2→(T3→T4)l2 c̈2) = Faill1(T3→T4)l2

? (c̈1
S→(T1→T2)l c̈2) • Bε = Faill

? (c̈1
S→(T1→T2)l1 c̈2) • Bl2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? Faill • Bε = Faill • c̈1 S→ε c̈2 = Faill

Faill1 • Bl2 = Faill1Bl2

? Faill1 • c̈1 S→(T3→T4)l2 c̈2 = = Faill1(T3→T4)l2

? Faill1Bl2 • Bε = Faill1(T1→T2)l2 • c̈1 T3→T4→ε c̈2 = Faill1

Faill1Bl2 • Bl3 = Faill1Bl3

? Faill1(T1→T2)l2 • c̈1 T3→T4→(T5→T6)l3 c̈2 = Faill1(T5→T6)l3

? Faill1B1l2 • Bε2 = Faill1Bl2 • c̈1 T1→T2→ε c̈2 = Faill2 ifB1 6= B2

Faill1B1l2 • Bl32 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • c̈1 T3→T4→(T5→T6)l3 c̈2 = Faill2(T5→T6)l3

Figure 14: Lazy D Supercomposition, Version 4

The new cases of compilation arise from our first simplification.

〈〈?⇐T1 → T2〉〉l = I(T1) T1→T2→ε I(T2)

〈〈T1 → T2⇐?〉〉l = I(T1) ε→(T1→T2)
l

I(T2).

29

l ∈ LABELS, B ∈ BASICTYPE, T ∈ TYPES, c̈ ∈ SUPERC
SUPERCT2⇐T1 = { c̈ | ` c̈ : T2 ⇐ T1 }
G ::= B | T → T
p ::= ε | l
H ::= ε | Gl
S ::= ε | T → T
Q ::= Bp | c̈ S→H c̈

c̈ ::= ι? | FaillH | Q

` ι? : ?⇐ ? ` Faillε : T2 ⇐ T1 ` Faill1Gl2 : T ⇐ ?

` Bε : B ⇐ B ` Bε : ?⇐ B ` Bl : B ⇐ ? ` Bl : ?⇐ ?

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 ε→ε c̈2 : T1 → T4 ⇐ T2 → T3

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 (T1→T4)→(T2→T3)l c̈2 : ?⇐ ?

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 (T1→T4)→ε c̈2 : ?⇐ T2 → T3

` c̈1 : T2 ⇐ T1 ` c̈2 : T4 ⇐ T3

` c̈1 ε→(T2→T3)l c̈2 : T1 → T4 ⇐ ?

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Composition

ι? • c̈ = c̈ • ι? = c̈
Bp1 • Bp2 = Bp2

(c̈1
S→ε c̈2) • (c̈3 ε→H c̈4) = (c̈3 • c̈1) S→H (c̈2 • c̈4)

(c̈1
S→(T1→T2)l1 c̈2) • (c̈3 T3→T4→H c̈4) = (c̈3 • 〈〈T3⇐T1〉〉l1 • c̈1) S→H (c̈2 • 〈〈T2⇐T4〉〉l1 • c̈4)

? Q1 •Q2 = Faill1[Q2] ifQ1 →← Q2, [Q1] = Gl1
? c̈ • Faill1H = Faill1H

? Faill1ε •Q = Faill1[Q]

? Faill1Gl2 •Q = Faill1[Q] if dGe = dQe
? Faill1Gl2 •Q = Faill2[Q] if dGe 6= dQe

where[
B
ε]

= ε[
B
l
]
= Bl[

c1
S→ε

c2
]
= ε[

c1
S→Gl

c2
]
= Gl

dBpe = B

dc1 S→H
c2e =→

dBe = B

dT1 → T2e =→

Figure 15: Lazy D Labeled Types

30

5 Eager Threesomes
As discussed in Sec. 2.1, eager coercion calculi differ from lazy variants in that they detect and report some cast
failures earlier. In particular, an arrow coercion c1 → c2 cannot be in normal form and have any of its leaves be a
Faill cast. Such failures percolate upwards. For instance, under Lazy UD, Faill → ι? was normal. That is no longer
the case.

To support eager checking, the grammar for normal coercions must change.

wrappers c ::= G! | cv → cv | G! ◦ (cv → cv)
value prefix cp ::= Faill | c | Faill ◦ (cv → cv)
normal values cv ::= ιP | c | Faill ◦ (cv → cv) | G?l | cp ◦G?l

normal coercions cw ::= Faill | cv

To characterize the normal eager coercions, we differentiate between normal coercions at the toplevel and normal
values cv , which can safely appear under an arrow. In particular, Faill by itself cannot appear under an arrow.

During reduction, definitive failures percolate upwards based on two new rules:

Faill → c −→◦ Faill

cv → Faill −→◦ Faill

Immediate cast inconsistencies below the head type constructor are reported as failures at the top-level, with domain
failures taking precedence over codomain failures.

To ensure that reduction is consistent, and that the inner failures of complex expressions take precedence, arrow
coercions can only be combined if the subcoercions are known to not be failures.

(cv1 → cv2) ◦ (cv3 → cv4) −→◦ (cv3 ◦ cv1)→ (cv2 ◦ cv4)

Were this not the case, then some coercion expressions could resolve to inconsistent answers, for example:

(Faill1 → c1) ◦ (Faill2 → c2) −→◦ (Faill1 → c1) ◦ Faill2

−→◦ Faill2

and

(Faill1 → c1) ◦ (Faill2 → c2) −→◦ (Faill2 ◦ Faill1 → c1 ◦ c2)

−→◦∗ Faill1 .

Furthermore, we must restrict rule (6) from the Lazy UD coercion calculus to ensure that a failing coercion never
consumes an arrow coercion to its right:

(6) Fail
l ◦G! −→◦ Faill

Without this restriction, reducing a coercion like Faill1 ◦ (?→ Int?l2) ◦ (?→ Bool!) from left-to-right could
reduce to Faill1 instead of the proper Faill2 . This restriction preserves associativity of ◦ and enables space efficient
casts on the call stack.

Finally, to support eager blame tracking the λ〈c〉 calculus must be extended with one additional rule:

(9) 〈Faill ◦ (cv1 → cv2)〉s −→ blame l

Since the coercion calculus can no longer reduce Faill ◦ (cv1 → cv2), it is up to λ〈c〉 to detect it. In this context, the
Faill ◦ (cv1 → cv2) is not at risk of being composed with another (cv2 → cv3) cast that could cause a different failure to
take precedence over Faill.

As with the lazy variants, these calculi are confluent and strongly normalizing, so one can define a normal com-
position operator cv � cv . Because of the new reduction rules, complex arrow coercions interact with composition

31

c̈ ::= Faill | c̈v

c̈v ::= FaillGl | G! | G?l | Gll | ιP | c̈v → c̈v

| c̈v →
(T→T)l
↓ c̈v | c̈v T→T

↑ → c̈v | c̈v T→T
↑ →

(T→T)l
↓ c̈v

| c̈v
Fl→ c̈v | c̈v Fl→

(T→T)l

↓ c̈v

` Faill : T2 ⇐ T1 ` Faill1Gl2 : T ⇐ ? ` G! : ?⇐ G ` G?l : G⇐ ? ` Gll : ?⇐ ?

` ιP : P ⇐ P

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 → c̈v2 : T1 → T4 ⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1
T1→T4
↑ →

(T2→T3)l

↓ c̈v2 : ?⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1
T1→T4
↑ → c̈v2 : ?⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 →
(T2→T3)l

↓ c̈v2 : T1 → T4 ⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1
Fl→ c̈v2 : T ⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1
Fl1→

(T2→T3)l2

↓ c̈v2 : T ⇐ ?

Figure 16: Eager D Supercoercions

differently. To capture this difference, we first define an operation →̂ that combines normal coercions according to
whether either is a failure.

̂cv → cv = cv → cv

̂Faill → cw = Faill

̂cv → Faill = Faill

Armed with this, we can succinctly characterize how eager arrow coercions compose.

Proposition 8.
(c1 → c2)� (c3 → c4) = ̂(c3 � c1)→ (c2 � c4).

Proof. Straightforward.

5.1 Eager D Threesomes
Applying our calculational approach to the eager calculi largely follows the same pattern. As with the the normal
eager coercions, non-failure supercoercions c̈v must be differentiated from the full set of supercoercions c̈. Thus, the
simple arrow supercoercions have the form c̈v → c̈v .

Fig. 16 presents the Eager D supercoercions. Eager D restricts all arrow supercoercions to consist of value super-
coercion parts c̈v . To represent the notion of a failure coercion followed by an arrow coercion, Eager D extends the
Lazy D supercoercions with two failure arrows supercoercions, whose interpretations are as follows:

N [[c̈v1
Fl→ c̈v2]] = Fail

l ◦ N [[c̈v1 → c̈v2]]

N [[c̈v1
Fl1→

(T1→T2)l2

↓ c̈v2]] = Fail
l1 ◦ N [[c̈v1 → c̈v2]] ◦ (T1 → T2)?l2

Only two kinds of failure arrows are needed, since a trailing injection to ? would be annihilated by a Faill

coercion, e.g.:
Fail

l ◦ (T1 → T2)! ◦ (c1 → c2) −→o ◦(c1 → c2)

32

Version 1: Fig. 17 and 18.
Composition for Eager D supercoercions introduces some new equations to characterize failure arrow supercoer-

cions. For instance, they annihilate to the left:

c̈ • (c̈v1
Fl→ c̈v2) = (c̈v1

Fl→ c̈v2)

Furthermore, equations that yield arrow supercoercions are defined using failure-detecting auxiliary functions like
̂c̈v → c̈v . For example:

(c̈v1 →
(T1→T2)l

↓ c̈v2) • (c̈v3
T3→T4
↑ → c̈v4) = ̂(c̈v3 • 〈〈T3⇐T1〉〉l • c̈v1)→ (c̈v2 • 〈〈T2⇐T4〉〉l • c̈v4)

The complex failure-detecting arrow functions are specified in terms of the simple arrow case and • itself, e.g.:

̂
c̈v1 →

(T1→T2)l

↓ c̈v2 = ̂c̈v1 → c̈v2 • (T1 → T2)?l

The full definitions follow:

̂c̈v1 → c̈v2 = c̈v1 → c̈v2

̂Faill → c̈2 = Fail
l

̂c̈v1 → Faill = Fail
l

̂
c̈v1

T1→T2
↑ → c̈v2 = c̈v1

T1→T2
↑ → c̈v2

̂
Faill

T1→T2
↑ → c̈2 = Fail

l

̂
c̈v1

T1→T2
↑ → Faill = Fail

l

̂
c̈v1 →

(T1→T2)l2
↓ c̈v2 = c̈v1 →

(T1→T2)l

↓ c̈v2

̂
Faill1 →

(T1→T2)l2
↓ c̈2 = Fail

l1(T1→T2)l2

̂
c̈v1 →

(T1→T2)l2
↓ Faill1 = Fail

l1(T1→T2)l2

̂
c̈v1

T1→T2
↑ →

(T3→T4)l

↓ c̈v2 = c̈v1
T1→T2
↑ →

(T3→T4)l

↓ c̈v2

̂
Faill1

T1→T2
↑ →

(T3→T4)l2
↓ c̈2 = Fail

l1(T3→T4)l2

̂
c̈v1

T1→T2
↑ →

(T3→T4)l2
↓ Faill1 = Fail

l1(T3→T4)l2

̂
c̈v1

Fl→ c̈v2 = c̈v1
Fl→ c̈v2

̂
Faill1

Fl2→ c̈2 = Fail
l1

̂
c̈v1

Fl2→ Faill1 = Fail
l1

̂
c̈v1

Fl1→
(T1→T2)l2

↓ c̈v2 = c̈v1
Fl1→

(T1→T2)l2

↓ c̈v2

̂
Faill1

Fl3→
(T1→T2)l2

↓ c̈2 = Fail
l1(T1→T2)l2

̂
c̈v1

Fl3→
(T1→T2)l2

↓ Faill1 = Fail
l1(T1→T2)l2

In Eager D, equations that involve failure and arrow coercions may produce a failure arrow, whereas the Lazy D
equivalent simply produced failure. For instance,

Fail
l1(T1→T2)l2 • (T3 → T4)! =

̂
〈〈T3⇐T1〉〉l2

Fl1→ 〈〈T2⇐T4〉〉l1

Under Lazy D, the result is simply Faill1 .

5.2 Simplification
As with the other calculi, primitive arrow coercions are redundant and may be replaced with complex arrow coercions.

Version 2: Fig. 19 and 20.
One difference from Lazy D, however, is that Faill1(T1→T2)l2 coercions are also redundant. These primitive

coercions can be replaced with

I(T1)
Fl1→

(T1→T2)l2

↓ I(T2).

Thus, the only remaining primitive failure coercions are Faill and FaillBl.
Version 3: Fig. 21 and 22.

33

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

G! •G?l = Gll

B?l • B! = ιB

(T1 → T2)?
l • (T3 → T4)! = ̂〈〈T3⇐T1〉〉l → 〈〈T2⇐T4〉〉l
B?l1 • Bll2 = B?l2

(T1 → T2)?
l1 • (T3 → T4)ll2 =

̂
〈〈T3⇐T1〉〉l1 →

(T3→T4)l2
↓ 〈〈T2⇐T4〉〉l1

Bll1 • B! = B!

(T1 → T2)ll • (T3 → T4)! =
̂

〈〈T3⇐T1〉〉l
T1→T2

↑ → 〈〈T2⇐T4〉〉l
Bll1 • Bll2 = Bll2

(T1 → T2)ll1 • (T3 → T4)ll2 =
̂

〈〈T3⇐T1〉〉l
T1→T2

↑ →
(T3→T4)l2

↓ 〈〈T2⇐T4〉〉l

(c̈v1 → c̈v2) • (c̈
v
3 → c̈v4) = ̂(c̈v3 • c̈v1)→ (c̈v2 • c̈v4)

(c̈v1 → c̈v2) • (c̈
v
3 →

(T1→T2)l
↓ c̈v4) =

̂
(c̈v3 • c̈v1) →

(T1→T2)l
↓ (c̈v2 • c̈v4)

(c̈v3
T1→T2

↑ → c̈v4) • (c̈
v
3 → c̈v4) =

̂
(c̈v3 • c̈v1)

T1→T2
↑ → (c̈v2 • c̈v4)

(c̈v1
T1→T2

↑ → c̈v2) • (c̈
v
3 →

(T3→T4)l
↓ c̈v4) =

̂
(c̈v3 • c̈v1)

T1→T2
↑ →

(T3→T4)l
↓ (c̈v2 • c̈v4)

(c̈v1
Fl→ c̈v2) • (c3 → c4) =

̂
(c̈v3 • c̈v1)

Fl→ (c̈v2 • c̈v4)

(c̈v1
Fl1→ c̈v2) • (c3 →

(T1→T2)l2
↓ c4) =

̂
(c̈v3 • c̈v1)

Fl1→
(T1→T2)l2
↓ (c̈v2 • c̈v4)

(c̈v1 →
(T1→T2)l

↓ c̈v2) • (c̈
v
3

T3→T4
↑ → c̈v4) = ̂(c̈v3 • 〈〈T3⇐T1〉〉l • c̈v1)→ (c̈v2 • 〈〈T2⇐T4〉〉l • c̈v4)

(c̈v1
T1→T2

↑ →
(T3→T4)l

↓ c̈v2) • (c̈
v
3

T5→T6
↑ → c̈v4) =

̂
(c̈v3 • 〈〈T5⇐T3〉〉l • c̈v1)

T1→T2
↑ → (c̈v2 • 〈〈T4⇐T6〉〉l • c̈v4)

(c̈v1 →
(T1→T2)l

↓ c̈v2) • (c̈
v
3

T3→T4
↑ →

(T5→T6)l
↓ c̈v4) =

̂
(c̈v3 • 〈〈T3⇐T1〉〉l • c̈v1) →

(T5→T6)l
↓ (c̈v2 • 〈〈T2⇐T4〉〉l • c̈v4)

(c̈v1
T1→T2

↑ →
(T3→T4)l1

↓ c̈v2) • (c̈
v
3

T5→T6
↑ →

(T7→T8)l2
↓ c̈v4) =

̂
(c̈v3 • 〈〈T5⇐T3〉〉l1 • c̈v1)

T1→T2
↑ →

(T7→T8)l2
↓ (c̈v2 • 〈〈T4⇐T6〉〉l1 • c̈v4)

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • (c̈

v
3

T3→T4
↑ → c̈v4) =

̂
(c̈v3 • 〈〈T3⇐T1〉〉l2 • c̈v1)

Fl1→ (c̈v2 • 〈〈T2⇐T4〉〉l2 • c̈v4)

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • (c̈

v
3

T3→T4
↑ →

(T5→T6)l3
↓ c̈v4) =

̂
(c̈v3 • 〈〈T3⇐T1〉〉l2 • c̈v1)

Fl1→
(T5→T6)l3
↓ (c̈v2 • 〈〈T2⇐T4〉〉l2 • c̈v4)

(T1 → T2)! • (c̈v1 → c̈v2) = c̈v1
T1→T2

↑ → c̈v2

(T1 → T2)! • (c̈v1 →
(T3→T4)l

↓ c̈v2) = c̈v1
T1→T2

↑ →
(T3→T4)l

↓ c̈v2

(T1 → T2)?
l • (c̈v1

T3→T4
↑ → c̈v2) = ̂(c̈v1 • 〈〈T3⇐T1〉〉l)→ (〈〈T2⇐T4〉〉l • c̈v2)

(T1 → T2)?
l • (c̈v1

T3→T4
↑ →

(T5→T6)l2
↓ c̈v2) =

̂
(c̈v1 • 〈〈T3⇐T1〉〉l) →

(T5→T6)l2
↓ (〈〈T2⇐T4〉〉l • c̈v2)

(T1 → T2)ll • (c̈v1
T3→T4

↑ → c̈v2) =
̂

(c̈v1 • 〈〈T3⇐T1〉〉l)
T1→T2

↑ → (〈〈T2⇐T4〉〉l • c̈v2)

(T1 → T2)ll1 • (c̈v1
T3→T4

↑ →
(T5→T6)l2

↓ c̈v2) =
̂

(c̈v1 • 〈〈T3⇐T1〉〉l1)
T1→T2

↑ →
(T5→T6)l2

↓ (〈〈T2⇐T4〉〉l1 • c̈v2)

(c̈v1 → c̈v2) • (T1 → T2)?
l = c̈v1 →

(T1→T2)l
↓ c̈v2

(c̈v1
T1→T2

↑ → c̈v2) • (T3 → T4)?
l = c̈v1

T1→T2
↑ →

(T3→T4)l
↓ c̈v2

(c̈v1
Fl1→ c̈v2) • (T1 → T2)?

l2 = c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2

(c̈v1 →
(T1→T2)l

↓ c̈v2) • (T3 → T4)! = ̂(〈〈T3⇐T1〉〉l • c̈v1)→ (c̈v2 • 〈〈T2⇐T4〉〉l)

(c̈v1
T1→T2

↑ →
(T3→T4)l

↓ c̈v2) • (T5 → T6)! =
̂

(〈〈T5⇐T3〉〉l • c̈v1)
T1→T2

↑ → (c̈v2 • 〈〈T4⇐T6〉〉l)

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • (T3 → T4)! =

̂
(〈〈T3⇐T1〉〉l • c̈v1)

Fl1→ (c̈v2 • 〈〈T2⇐T4〉〉l)

(c̈v1 →
(T1→T2)l1

↓ c̈v2) • (T3 → T4)ll2 =
̂

(〈〈T3⇐T1〉〉l1 • c̈v1) →
(T3→T4)l2

↓ (c̈v2 • 〈〈T2⇐T4〉〉l1)

(c̈v1
T1→T2

↑ →
(T3→T4)l

↓ c̈v2) • (T5 → T6)ll2 =
̂

(〈〈T5⇐T3〉〉l1 • c̈v1)
T1→T2

↑ →
(T5→T6)l2

↓ (c̈v2 • 〈〈T4⇐T6〉〉l1)

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • (T3 → T4)ll3 =

̂
(〈〈T3⇐T1〉〉l • c̈v1)

Fl1→
(T3→T4)l3
↓ (c̈v2 • 〈〈T2⇐T4〉〉l)

Figure 17: Eager D Supercomposition Version 1, Part 1

34

G1?
l •G2! = G1ll •G2! = Faill ifG1 →← G2

G1?
l1 •G2ll2 = G1ll1 •G2ll2 = Faill1G2l2 ifG1 →← G2

? B?l • (c̈v1
T1→T2

↑ → c̈v2) = Bll • (c̈v1
T1→T2

↑ → c̈v2) = c̈v1
Fl→ c̈v2

? B?l1 • (c̈v1
T1→T2

↑ →
(T3→T4)l2

↓ c̈v2) = Bll1 • (c̈v1
T1→T2

↑ →
(T3→T4)l2

↓ c̈v2) = c̈v1
Fl1→

(T3→T4)l2
↓ c̈v2

(c̈v1 →
(T1→T2)l

↓ c̈v2) • B! = (c̈v1
T1→T2

↑ →
(T3→T4)l

↓ c̈v2) • B! = Faill

(c̈v1 →
(T1→T2)l1

↓ c̈v2) • Bl
l2 = (c̈v1

T1→T2
↑ →

(T3→T4)l
↓ c̈v2) • Bl

l2 = Faill1Bl2

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • B! = Faill2

(c̈v1
Fl1→

(T1→T2)l2
↓ c̈v2) • Bl

l3 = Faill2Bl3

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? c̈ • (c̈v1
Fl→ c̈v2) = c̈v1

Fl→ c̈v2

? c̈ • (c̈v1
Fl2→

(T1→T2)l1
↓ c̈v2) = c̈v1

Fl2→
(T1→T2)l1
↓ c̈v2

Faill •G! = Faill

Faill1 •G?l2 = Faill1 •Gll2 = Faill1Gl2

? Faill • (c̈v1 → c̈v2) = Faill • (c̈v1
T1→T2

↑ → c̈v2) = c̈v1
Fl→ c̈v2

? Faill1 • (c̈v1 →
(T3→T4)l2

↓ c̈v2) = Faill1 • (c̈v1
T1→T2

↑ →
(T3→T4)l2

↓ c̈v2) = c̈v1
Fl1→

(T3→T4)l2
↓ c̈v2

Faill1Bl2 • B! = Faill1

Faill1Bl2 • Bll3 = Faill1Bl3

? Faill1(T1→T2)l2 • (T3 → T4)! =
̂

〈〈T3⇐T1〉〉l2
Fl1→ 〈〈T2⇐T4〉〉l2

? Faill1(T1→T2)l2 • (c̈v1
T3→T4

↑ → c̈v2) =
̂

(c̈v1 • 〈〈T3⇐T1〉〉l2)
Fl1→ (〈〈T2⇐T4〉〉l2 • c̈v2)

? Faill1(T1→T2)l2 • (T3 → T4)ll3 =
̂

〈〈T3⇐T1〉〉l2
Fl1→

(T3→T4)l3
↓ 〈〈T2⇐T4〉〉l2

? Faill1(T1→T2)l2 • (c̈v1
T3→T4

↑ →
(T5→T6)l3

↓ c̈v2) =
̂

(c̈v1 • 〈〈T3⇐T1〉〉l2)
Fl1→

(T5→T6)l3
↓ (〈〈T2⇐T4〉〉l2 • c̈v2)

Faill1G1l2 •G2! = Faill2 ifG1 →← G2

Faill1G1l2 •G2ll3 = Faill2G2l3 ifG1 →← G2

? Faill1Bl2 • (c̈v1
T1→T2

↑ → c̈v2) = c̈v1
Fl1→ c̈v2

? Faill1Bl2 • (c̈v1
T3→T4

↑ →
(T5→T6)l3

↓ c̈v2) = c̈v1
Fl1→

(T5→T6)l3
↓ c̈v2

Figure 18: Eager D Supercomposition Version 1, Part 2

35

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

B! • B?l = Bll
B?l • B! = ιB

B?l1 • Bll2 = B?l2

Bll1 • B! = B!

Bll1 • Bll2 = Bll2

(c̈1 → c̈2) • (c̈3 → c̈4) = ̂(c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) =
̂

(c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1
Fl→ c̈2) • (c3 → c4) =

̂
(c̈3 • c̈1)

Fl→ (c̈2 • c̈4)

(c̈1
Fl1→ c̈2) • (c3 →

(T1→T2)l2
↓ c4) =

̂
(c̈3 • c̈1)

Fl1→
(T1→T2)l2
↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = ̂(c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) =
̂

(c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ → c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ →

(T5→T6)l3
↓ c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→
(T5→T6)l3
↓ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

Figure 19: Eager D Supercomposition Version 2, Part 1

36

B1?
l • B2! = B1ll • B2! = Faill ifB1 6= B2

B1?
l1 • B2ll2 = B1ll1 • B2ll2 = Faill1B2l2 ifB1 6= B2

? B?l • (c̈1
T1→T2

↑ → c̈2) = Bll • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

? B?l1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Bll1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

(c̈1 →
(T1→T2)l

↓ c̈2) • B! = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B! = Faill

(c̈1 →
(T1→T2)l1

↓ c̈2) • Bll2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bll2 = Faill1Bl2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • B! = Faill2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • Bll3 = Faill2Bl3

c̈ • Faill = Faill

c̈ • Faill1Gl2 = Faill1Gl2

? c̈ • (c̈1
Fl→ c̈2) = c̈1

Fl→ c̈2

? c̈ • (c̈1
Fl2→

(T1→T2)l1
↓ c̈2) = c̈1

Fl2→
(T1→T2)l1
↓ c̈2

Faill • B! = Faill

Faill1 • B?l2 = Faill1 • Bll2 = Faill1Bl2

? Faill • (c̈1 → c̈2) = Faill • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

Faill1 • (c̈1 →
(T3→T4)l2

↓ c̈2) = Faill1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

Faill1Bl2 • B! = Faill1

Faill1Bl2 • Bll3 = Faill1Bl3

? Faill1(T1→T2)l2 • (c̈1
T3→T4

↑ → c̈2) =
̂

(c̈1 • 〈〈T3⇐T1〉〉l2)
Fl1→ (〈〈T2⇐T4〉〉l2 • c̈2)

? Faill1(T1→T2)l2 • (c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2) =
̂

(c̈1 • 〈〈T3⇐T1〉〉l2)
Fl1→

(T5→T6)l3
↓ (〈〈T2⇐T4〉〉l2 • c̈2)

Faill1B1l2 • B2! = Faill2 ifB1 6= B2

Faill1B1l2 • B2ll3 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl1→ c̈2

? Faill1Bl2 • (c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2) = c̈1
Fl1→

(T5→T6)l3
↓ c̈2

Figure 20: Eager D Supercomposition Version 2, Part 2

37

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ιP • c̈ = c̈ • ιP = c̈

B! • B?l = Bll
B?l • B! = ιB

B?l1 • Bll2 = B?l2

Bll1 • B! = B!

Bll1 • Bll2 = Bll2

(c̈1 → c̈2) • (c̈3 → c̈4) = ̂(c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) =
̂

(c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1
Fl→ c̈2) • (c3 → c4) =

̂
(c̈3 • c̈1)

Fl→ (c̈2 • c̈4)

(c̈1
Fl1→ c̈2) • (c3 →

(T1→T2)l2
↓ c4) =

̂
(c̈3 • c̈1)

Fl1→
(T1→T2)l2
↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = ̂(c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) =
̂

(c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ → c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ →

(T5→T6)l3
↓ c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→
(T5→T6)l3
↓ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

Figure 21: Eager D Supercomposition Version 3, Part 1

Base type coercions can be merged as before.
Version 4: Fig. 23.
Version 5: Fig. 24.
Merging arrow coercions is complicated by the addition of the failure arrow, which must be accounted for. We

merge our three arrow coercion forms as before, but now the prefix arrow label has 3 forms, adding the blame label l
to indicate a failure arrow.

S ::= ε | G | l
H ::= ε | Gl

After this change, the arrow coercions have the form

c̈v S→H c̈v,

Along with the requisite auxiliary arrow function

̂c̈ S→H c̈.

Version 6: Fig. 25.
After merging the primitive failure coercions, we arrive at the our final definition of Eager D Labeled types

(Fig. 26). This more complex than the Lazy D ones specifically because failure arrows require some independent
treatment, despite our structural unification of arrows. However, Eager D uses the same cast compilation function as
for Lazy D: the differences show up at runtime.

To use Eager D supercoercions, the λ〈c̈〉 calculus requires, just as λ〈c〉 did, an additional rule for failure arrows:

〈T1
c̈1

l→H c̈2⇐= T2〉 s −→ blame l.

38

B1?
l • B2! = B1ll • B2! = Faill ifB1 6= B2

B1?
l1 • B2ll2 = B1ll1 • B2ll2 = Faill1B2l2 ifB1 6= B2

? B?l • (c̈1
T1→T2

↑ → c̈2) = Bll • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

B?l1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = Bll1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

(c̈1 →
(T1→T2)l

↓ c̈2) • B! = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B! = Faill

? (c̈1 →
(T1→T2)l1

↓ c̈2) • Bll2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bll2 = Faill1Bl2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • B! = Faill2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • Bll3 = Faill2Bl3

c̈ • Faill = Faill

c̈ • Faill1Bl2 = Faill1Bl2

? c̈ • (c̈1
Fl→ c̈2) = c̈1

Fl→ c̈2

? c̈ • (c̈1
Fl2→

(T1→T2)l1
↓ c̈2) = c̈1

Fl2→
(T1→T2)l1
↓ c̈2

Faill • B! = Faill

Faill1 • B?l2 = Faill1 • Bll2 = Faill1Bl2

? Faill • (c̈1 → c̈2) = Faill • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

Faill1 • (c̈1 →
(T3→T4)l2

↓ c̈2) = Faill1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

Faill1Bl2 • B! = Faill1

Faill1Bl2 • Bll3 = Faill1Bl3

Faill1B1l2 • B2! = Faill2 ifB1 6= B2

Faill1B1l2 • B2ll3 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl1→ c̈2

? Faill1Bl2 • (c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2) = c̈1
Fl1→

(T5→T6)l3
↓ c̈2

Figure 22: Eager D Supercomposition Version 3, Part 2

39

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

B • B = B

B • Bl = Bl

Bl • B = B

Bl • Bl = Bl

(c̈1 → c̈2) • (c̈3 → c̈4) = ̂(c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) =
̂

(c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1
Fl→ c̈2) • (c3 → c4) =

̂
(c̈3 • c̈1)

Fl→ (c̈2 • c̈4)

(c̈1
Fl1→ c̈2) • (c3 →

(T1→T2)l2
↓ c4) =

̂
(c̈3 • c̈1)

Fl1→
(T1→T2)l2
↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = ̂(c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) =
̂

(c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ → c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ →

(T5→T6)l3
↓ c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→
(T5→T6)l3
↓ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

Bl1 • B2 = Faill ifB1 6= B2

B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

? Bl1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

(c̈1 →
(T1→T2)l

↓ c̈2) • B = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B = Faill

(c̈1 →
(T1→T2)l1

↓ c̈2) • Bl2 = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • Bl2 = Faill1Bl2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • B = Faill2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • Bl3 = Faill2Bl3

c̈ • Faill = Faill

c̈ • Faill1Bl2 = Faill1Bl2

? c̈ • (c̈1
Fl→ c̈2) = c̈1

Fl→ c̈2

? c̈ • (c̈1
Fl2→

(T1→T2)l1
↓ c̈2) = c̈1

Fl2→
(T1→T2)l1
↓ c̈2

Faill • B = Faill

Faill1 • Bl2 = Faill1Bl2

? Faill • (c̈1 → c̈2) = Faill • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

Faill1 • (c̈1 →
(T3→T4)l2

↓ c̈2) = Faill1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

Faill1Bl2 • B = Faill1

Faill1Bl2 • Bl3 = Faill1Bl3

Faill1B1l2 • B2 = Faill2 ifB1 6= B2

Faill1B1l2 • Bl32 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl1→ c̈2

? Faill1Bl2 • (c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2) = c̈1
Fl2→

(T5→T6)l3
↓ c̈2

Figure 23: Eager D Supercomposition Version 4

40

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

Bp1 • Bp2 = Bp2

(c̈1 → c̈2) • (c̈3 → c̈4) = ̂(c̈3 • c̈1)→ (c̈2 • c̈4)

(c̈1 → c̈2) • (c̈3 →
(T1→T2)l

↓ c̈4) =
̂

(c̈3 • c̈1) →
(T1→T2)l

↓ (c̈2 • c̈4)

(c̈3
T1→T2

↑ → c̈4) • (c̈3 → c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ → (c̈2 • c̈4)

(c̈1
T1→T2

↑ → c̈2) • (c̈3 →
(T3→T4)l

↓ c̈4) =
̂

(c̈3 • c̈1)
T1→T2

↑ →
(T3→T4)l

↓ (c̈2 • c̈4)

(c̈1
Fl→ c̈2) • (c3 → c4) =

̂
(c̈3 • c̈1)

Fl→ (c̈2 • c̈4)

(c̈1
Fl1→ c̈2) • (c3 →

(T1→T2)l2
↓ c4) =

̂
(c̈3 • c̈1)

Fl1→
(T1→T2)l2
↓ (c̈2 • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ → c̈4) = ̂(c̈3 • 〈〈T3⇐T1〉〉l • c̈1)→ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1 →
(T1→T2)l

↓ c̈2) • (c̈3
T3→T4

↑ →
(T5→T6)l

↓ c̈4) =
̂

(c̈3 • 〈〈T3⇐T1〉〉l • c̈1) →
(T5→T6)l

↓ (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • (c̈3
T5→T6

↑ → c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l • c̈1)
T1→T2

↑ → (c̈2 • 〈〈T4⇐T6〉〉l • c̈4)

(c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • (c̈3
T5→T6

↑ →
(T7→T8)l2

↓ c̈4) =
̂

(c̈3 • 〈〈T5⇐T3〉〉l1 • c̈1)
T1→T2

↑ →
(T7→T8)l2

↓ (c̈2 • 〈〈T4⇐T6〉〉l1 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ → c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • (c̈3

T3→T4
↑ →

(T5→T6)l3
↓ c̈4) =

̂
(c̈3 • 〈〈T3⇐T1〉〉l2 • c̈1)

Fl1→
(T5→T6)l3
↓ (c̈2 • 〈〈T2⇐T4〉〉l2 • c̈4)

Bl1 • B2 = Faill ifB1 6= B2

B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

? Bl1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

(c̈1 →
(T1→T2)l

↓ c̈2) • B = (c̈1
T1→T2

↑ →
(T3→T4)l

↓ c̈2) • B = Faill

(c̈1 →
(T1→T2)l1

↓ c̈2) • Bl2 = (c̈1
T1→T2

↑ →
(T3→T4)l1

↓ c̈2) • Bl2 = Faill1Bl2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • B = Faill2

(c̈1
Fl1→

(T1→T2)l2
↓ c̈2) • Bl3 = Faill2Bl3

c̈ • Faill = Faill

c̈ • Faill1Bl2 = Faill1Bl2

? c̈ • (c̈1
Fl→ c̈2) = c̈1

Fl→ c̈2

? c̈ • (c̈1
Fl2→

(T1→T2)l1
↓ c̈2) = c̈1

Fl2→
(T1→T2)l1
↓ c̈2

Faill • B = Faill

Faill1 • Bl2 = Faill1Bl2

? Faill • (c̈1 → c̈2) = Faill • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl→ c̈2

Faill1 • (c̈1 →
(T3→T4)l2

↓ c̈2) = Faill1 • (c̈1
T1→T2

↑ →
(T3→T4)l2

↓ c̈2) = c̈1
Fl1→

(T3→T4)l2
↓ c̈2

Faill1Bl2 • B = Faill1

Faill1Bl2 • Bl3 = Faill1Bl3

Faill1B1l2 • B2 = Faill2 ifB1 6= B2

Faill1B1l2 • Bl32 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • (c̈1
T1→T2

↑ → c̈2) = c̈1
Fl1→ c̈2

? Faill1Bl2 • (c̈1
T3→T4

↑ →
(T5→T6)l3

↓ c̈2) = c̈1
Fl2→

(T5→T6)l3
↓ c̈2

Figure 24: Eager D Supercomposition Version 5

41

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Supercoercion Composition

ι? • c̈ = c̈ • ι? = c̈

Bp1 • Bp2 = Bp2

c̈1
S→ε c̈2 • c̈3 ε→H c̈4 = ̂(c̈3 • c̈1) S→H (c̈2 • c̈4)

c̈1
S→T1→Tl2 c̈2 • c̈3 T3→T4→H c̈4 = ̂(c̈3 • 〈〈T3⇐T1〉〉l • c̈1) S→H (c̈2 • 〈〈T2⇐T4〉〉l • c̈4)

Bl1 • B
ε
2 = Faill ifB1 6= B2

B
l1
1 • B

l2
2 = Faill1B2l2 ifB1 6= B2

? Bl1 • c̈1 T1→T2→H c̈2 = c̈1
l1→H c̈2

c̈1
S→Gl c̈2 • Bε = Faill

c̈1
S→Gl1 c̈2 • Bl2 = Faill1Bl2

c̈ • Faill = Faill

c̈ • Faill1Bl2 = Faill1Bl2

? c̈ • c̈1 l1→H c̈2 = c̈1
l1→H c̈2

Faill • Bε = Faill

Faill1 • Bl2 = Faill1Bl2

? Faill1 • c̈1 ε→H c̈2 = Faill1 • c̈1 G1→H c̈2 = c̈1
l1→H c̈2

Faill1Bl2 • Bε = Faill1

Faill1Bl2 • Bl3 = Faill1Bl3

Faill1B1l2 • Bε2 = Faill2 ifB1 6= B2

Faill1B1l2 • Bl32 = Faill2B2l3 ifB1 6= B2

? Faill1Bl2 • c̈1 (T1→T2)→H c̈2 = c̈1
l2→H c̈2

Figure 25: Eager D Supercomposition Version 6

The Latent variant simply drops the outer types of the threesome:

〈c̈1 l→H c̈2〉s −→ blame l.

42

l ∈ LABELS, B ∈ BASICTYPE, T ∈ TYPES, c̈ ∈ SUPERC
SUPERCT2⇐T1 = { c̈ | ` c̈ : T2 ⇐ T1 }
G ::= B | T → T
p ::= ε | l
H ::= ε | Gl
S ::= ε | G | l
c̈ ::= ι? | FaillH | Bp | c̈v S→H c̈v

` ι? : ?⇐ ? ` Faillε : T2 ⇐ T1 ` Faill1Bl2 : T ⇐ ?

` Bε : B ⇐ B ` Bε : ?⇐ B ` Bl : B ⇐ ? ` Bl : ?⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 ε→ε c̈v2 : T1 → T4 ⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v2 (T1→T4)→(T2→T3)l c̈v1 : ?⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v2 (T1→T4)→ε c̈v1 : ?⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v2 ε→(T2→T3)
l

c̈v1 : T1 → T4 ⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 l1→ε c̈v2 : T ⇐ T2 → T3

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 l1→(T2→T3)
l2
c̈v2 : T ⇐ ?

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Composition

ι? • c̈ = c̈ • ι? = c̈

Bp1 • Bp2 = Bp2

c̈v1
S→ε c̈v2 • c̈

v
3
ε→H c̈v4 = ̂(c̈v3 • c̈v1) S→H (c̈v2 • c̈v4)

(c̈v1
S→(T1→T2)l c̈v2) • (c̈

v
3
T3→T4→H c̈v4) = ̂(c̈v3 • 〈T3⇐T1〉l • c̈v1) S→H (c̈v2 • 〈T2⇐T4〉l • c̈v4)

B
l1
1 • B

p2
2 = Fail

l1

[
B
p2
2

]
ifB1 6= B2

? Bl1 • c̈v1
T1→T2→H c̈v2 = c̈v1

l1→H c̈v2
c̈v1

S→Gl1 c̈v2 • B
p2 = Faill1[B

p2]

c̈ • FaillH = FaillH

? c̈ • c̈v1
l1→H c̈v2 = c̈v1

l1→H c̈v2

Faill1 • Bp2 = Faill1[B
p2]

? Faill1 • c̈v1
ε→H c̈v2 = Faill1 • c̈v1

G1→H c̈v2 = c̈v1
l1→H c̈v2

Faill1Bl2 • Bp3 = Faill1[B
p3]

Faill1B1l2 • Bp32 = Fail
l2

[
B
p3
2

]
ifB1 6= B2

? Faill1Bl2 • c̈v1
G1→H c̈v2 = c̈v1

l2→H c̈v2

where

[
B
ε]

= ε[
B
l
]
= Bl

̂c̈v1
S→H c̈v2 = c̈

v
1
S→H

c̈
v
2

̂Faill1 S→ε c̈2 =

̂c̈v1
S→ε Faill1 = Fail

l1

̂Faill1 S→(T1→T2)l2 c̈2 =

̂c̈v1
S→(T1→T2)l2 Faill1 = I(T1)

l1→(T1→T2)l2 I(T2)

Figure 26: Eager D Labeled Types

43

6 Eager UD Supercoercions
Rather than replay the process for Eager UD Supercoercions, we can treat it as a restriction of the Eager D system.
Recall that the major difference between D and UD is the presence of primitive arrow coercions aside from (? →
?)! =→!, etc. Restricting the definitions for Eager D in this manner is straightforward and leads to some simplifications
to the system. For instance, arrow coercions need not track types G any longer, since the only possible type is ?→ ?.
As a result, arrow coercions take on the much simpler form c̈v p→p c̈v . The Lazy D supercoercion Faill1→l2 is
represented with the arrow coercion ι? l1→l2 ι?. The supercoercions for Eager UD are presented in Fig. 27.

7 Discussion
The primary contributions of this paper are three novel threesome semantics for coercion calculi, each of which
supports desirable properties, like catching more errors sooner and a blame strategy based on traditional subtyping.
It was previously unknown whether the labeling protocol for threesomes could be adapted to capture D-style blame
tracking or the Eager variant of UD. This paper answers that question in the affirmative, and presents the proper
protocols and their derivations.

The eager threesome calculi in particular point to some significant efficiencies in our approach. To support con-
sistent blame in the eager systems, failure coercions have interact differently with arrow coercions than in the lazy
systems. The result at the threesome level is that composing eager labeled types no longer corresponds to the greatest
lower bound of the two types, i.e., ⊥ & (T1 → T2) = ⊥ does not apply for the type component of eager threesomes.
This suggests that the original approach of experimenting with labels on threesomes without blame might have led to
a long-lasting dead end.

In addition to new threesome-based semantics, the paper offers a fresh perspective on the original labeled types and
Threesome Calculus. Labeled types were developed from scratch, starting from the concept of threesomes without
blame, and adding blame labels later. We construct the same concept, but do so from a different starting point,
normal coercions, and proceed by stepwise refinement, maintaining correctness at each step. This process reveals that
threesomes with blame can be viewed as a streamlined implementation strategy for coercions, and exposes some of
the rich structure contained in the original system.

The Blame Calculus is but one point in a rich design space of cast-based languages. If such languages are to have
practical impact, they will need to be scaled beyond the basic lambda calculus to support more types (e.g., [Ahmed
et al., 2011, Siek and Taha, 2007]). As another step toward full-fledged implementations, we will endeavor to extend
our threesome calculi with these features, most likely by first extending their simpler coercion calculus counterparts.

8 Acknowledgements
We thank Jeremy Siek and Éric Tanter for motivating this work, for ongoing experiments with its results, and for
discussions about this paper. We also thank anonymous reviewers for their helpful comments about an earlier version
of this paper.

44

l ∈ LABELS, B ∈ BASICTYPE, T ∈ TYPES, c̈ ∈ SUPERC
SUPERCT2⇐T1 = { c̈ | ` c̈ : T2 ⇐ T1 }
p ::= ε | l
H ::= ε | Bl
c̈ ::= ι? | FaillH | Bp | c̈v p→p c̈v

` ι? : ?⇐ ? ` Faillε : T2 ⇐ T1 ` Faill1Bl2 : T ⇐ ?

` Bε : B ⇐ B ` Bε : ?⇐ B ` Bl : B ⇐ ? ` Bl : ?⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 ε→ε c̈v2 : T1 → T4 ⇐ T2 → T3

` c̈v1 : ?⇐ ? ` c̈v2 : ?⇐ ?

` c̈v2 ε→l c̈v1 : ?⇐ ?

` c̈v1 : T2 ⇐ ? ` c̈v2 : ?⇐ T3

` c̈v2 ε→ε c̈v1 : ?⇐ T2 → T3

` c̈v1 : ?⇐ T1 ` c̈v2 : T4 ⇐ ?

` c̈v2 ε→l c̈v1 : T1 → T4 ⇐ ?

` c̈v1 : T2 ⇐ T1 ` c̈v2 : T4 ⇐ T3

` c̈v1 l1→ε c̈v2 : T ⇐ T2 → T3

` c̈v1 : ?⇐ T1 ` c̈v2 : T4 ⇐ ?

` c̈v1 l1→l2 c̈v2 : T ⇐ ?

• : SUPERCT3⇐T2 × SUPERCT2⇐T1 → SUPERCT3⇐T1 Composition

ι? • c̈ = c̈ • ι? = c̈

Bp1 • Bp2 = Bp2

(c̈v1
p1→p2 c̈v2) • (c̈

v
3
ε→p3 c̈v4) = ̂(c̈v3 • c̈v1) p1→p3 (c̈v2 • c̈v4)

Bl1 • B
p
2 = Faill[B

p
2] ifB1 6= B2

Bl • (c̈v1
p1→p2 c̈v2) = (c̈v1

l→p2 c̈v2)

(c̈v1
p1→l c̈v2) • B

p2 = Faill[B
p2]

c̈ • FaillH = FaillH

c̈ • (c̈v1
l1→p2 c̈v2) = c̈v1

l1→p2 c̈v2

Faill • Bp = Faill[B
p]

Faill • (c̈v1
ε→p c̈v2) = c̈v1

l→p c̈v2

Faill1Bl2 • Bp = Faill1[B
p]

Faill1B1l2 • Bp2 = Faill2[B
p
2] ifB1 6= B2

Faill1Bl2 • (c̈v1
ε→p c̈v2) = c̈v1

l2→p c̈v2

where

[
B
ε]

= ε[
B
l
]
= Bl

̂c̈v1
p1→p2 c̈v2 = c̈

v
1
p1→p2 c̈

v
2

̂Faill1 p→ε c̈2 =

̂c̈v1
p→ε Faill1 = Fail

l1

̂Faill1 p→l2 c̈2 =

̂c̈v1
p→l2 Faill1 = ι?

l1→l2 ι?

Figure 27: Eager UD Labeled Types

45

References
M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. Dynamic typing in a statically typed language. Trans. Programming

Languages and Systems, 13(2):237–268, April 1991.

A. Ahmed, R. B. Findler, J. Siek, and P. Wadler. Blame for all. In Proc. Symposium on Principles of Programming
Languages, POPL ’11, pages 201–214, New York, NY, USA, 2011. ACM.

R. M. Burstall and J. Darlington. Some transformations for developing recursive programs. In Proc. International
Conference on Reliable Software, pages 465–472, New York, NY, USA, 1975. ACM. doi: 10.1145/800027.808470.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Int. Conf. on Functional Programming,
October 2002.

F. Henglein. Dynamic typing: syntax and proof theory. Science of Computer Programming, 22(3):197–230, June
1994.

D. Herman, A. Tomb, and C. Flanagan. Space-efficient gradual typing. In Trends in Functional Prog., page XXVIII,
April 2007.

L. Ina and A. Igarashi. Gradual typing for generics. In Proc. International Conference on Object-oriented Program-
ming Systems Languages and Applications, OOPSLA ’11, pages 609–624, New York, NY, USA, 2011. ACM.

A. Rastogi, A. Chaudhuri, and B. Hosmer. The ins and outs of gradual type inference. In Proc. Symposium on
Principles of Programming Languages, POPL ’12, pages 481–494, New York, NY, USA, 2012. ACM.

I. Sergey and D. Clarke. Gradual ownership types. In Proc. European Conference on Programming Languages and
Systems, ESOP’12, pages 579–599, Berlin, 2012. Springer-Verlag.

J. Siek. Strong normalization for coercion calculi. Unpublished Manuscript, 2011a.

J. Siek, 2011b. Private Correspondence.

J. Siek and W. Taha. Gradual typing for functional languages. In Proc. Scheme and Functional Programming Work-
shop, Sept. 2006.

J. Siek and W. Taha. Gradual typing for objects. In Proc. European Conference on Object-Oriented Programming,
ECOOP ’07, pages 2–27, Berlin, 2007. Springer-Verlag.

J. Siek and M. Vachharajani. Gradual typing with unification-based inference. In Proc. Symposium on Dynamic
languages, DLS ’08, pages 7:1–7:12, New York, NY, USA, 2008. ACM.

J. Siek and P. Wadler. Threesomes, with and without blame. In Proc. Symposium on Principles of Programming
Languages, POPL ’10, pages 365–376, New York, NY, USA, 2010. ACM.

J. Siek, R. Garcia, and W. Taha. Exploring the design space of higher-order casts. In Proc. European Symposium on
Programming Languages, ESOP ’09, pages 17–31, Berlin, 2009. Springer-Verlag.

S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed Scheme. In Proc. Symposium on
Principles of Programming Languages, POPL ’08, pages 395–406, New York, NY, USA, 2008. ACM.

P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proc. European Symposium on Programming
Languages, ESOP ’09, pages 1–16, Berlin, 2009. Springer-Verlag.

T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed and untyped code in a scripting
language. In Proc. Symposium on Principles of Programming Languages, POPL ’10, pages 377–388, New York,
NY, USA, 2010. ACM.

46

	Introduction
	Background: Casts, Threesomes, and Coercions
	Cast Calculi
	Threesomes
	Adding Blame to Threesomes is Subtle

	Lazy UD Coercions
	Reduction

	The "426830A c"526930B Calculus
	Space-efficient "426830A c"526930B
	Coercions are space efficient
	Implementing Coercions is Hard

	Threesomes for Lazy UD
	Properties of Coercion Reduction
	Supercoercions
	Simplifications
	Primitive arrow coercions are redundant
	Merge base type coercions into type-polymorphic counterparts
	Merge arrow coercions into type-polymorphic counterparts
	Introduce Optional Data and Coalesce
	Adapting "426830A c"526930B to Threesomes
	Summary

	Lazy D Threesomes
	Simplification

	Eager Threesomes
	Eager D Threesomes
	Simplification

	Eager UD Supercoercions
	Discussion
	Acknowledgements

