
Refining Semantics for Multi-stage Programming
Rui Ge

University of British Columbia, Canada
rge@cs.ubc.ca

Ronald Garcia
University of British Columba, Canada

rxg@cs.ubc.ca

Abstract
The multi-stage programming paradigm supports runtime
code generation and execution. Though powerful, its poten-
tial is impeded by the lack of static analysis support. Van
Horn and Might proposed a general-purpose approach to
systematically develop static analyses by transforming an
environmental abstract machine, which evolves a control
string, an environment and a continuation as a program eval-
uates. To the best of our knowledge, no such semantics exists
for a multi-stage language like MetaML.

We develop and prove correct an environmental abstract
machine semantics for MetaML by gradually refining the ref-
erence substitutional structural operational semantics. High-
lights of our approach include leveraging explicit substi-
tutions to bridge the gap between substitutional and envi-
ronmental semantics, and devising meta-environments to
model the complexities of variable bindings in multi-stage
environmental semantics.

CCSConcepts •Theory of computation→Operational
semantics; Abstract machines;

Keywords multi-stage programming, abstract machine se-
mantics, explicit substitutions, meta-environments
ACM Reference Format:
Rui Ge and Ronald Garcia. 2017. Refining Semantics for Multi-stage
Programming. In Proceedings of 16th ACM SIGPLAN International

Conference on Generative Programming: Concepts and Experiences

(GPCE’17). ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3136040.3136047

1 Introduction
Multi-stage programming is a programming paradigm that
supports runtime code generation and execution [20]. It
helps programmers leverage partial evaluation and program
specialisation techniques [8] to optimise the time and space
consumption of evaluating programs [17]. Though powerful,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE’17, October 23–24, 2017, Vancouver, Canada

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5524-7/17/10. . . $15.00
https://doi.org/10.1145/3136040.3136047

its potential has been impeded by the lack of development
aids such as code refactoring tools and stage-aware optimis-
ers, for which we believe one key culprit is the lack of static
analysis support. Our long-term goal is to design sound and
decidable static analyses for a multi-stage language.
Recently, Van Horn and Might [26] proposed a general-

purpose approach to systematically develop static analyses
by transforming a language’s formal semantics, which we
believe is applicable to multi-stage programming. This ap-
proach requires an environmental abstract machine, which
evolves a control string, an environment and a continua-
tion as a program evaluates. Using environments to archive
variable bindings allows us to trace function calls in the
machine’s history. To the best of our knowledge, no such
semantics exists for a multi-stage language.
In this paper, we study MetaML [23], a functional multi-

stage language that extends ML. We develop and prove cor-
rect an environmental abstract machine for MetaML by grad-
ually refining the reference substitutional structural opera-
tional semantics. Our contributions are as follows:

(1) Refining substitutional semantics to environmental se-
mantics is not straightforward for multi-stage languages. To
bridge the gap between substitutional and environmental
semantics, we leverage the concept of explicit substitutions
[1, 3, 15], which internalises how substitutions percolate
through a term at the semantical level. We systematically
replace the meta-language substitutions in MetaML with ex-
plicit substitutions, resulting in Explicit MetaML (Section 3).
(2) To more closely resemble the behaviour of environ-

mental semantics, we refine how to represent functions and
applications, i.e., what forms of lambda abstractions are ap-
plicable functions and how variable bindings are updated by
applications, resulting in Suspended MetaML (Section 4).
(3) MetaML allows a variable to be bound to an open

term. Thus a variable can be associated with a chain of vari-
able bindings. We devise meta-environments, i.e., sequences
of environments, to capture these possibly sophisticated
variable bindings. We refine Suspended MetaML to Environ-

mental MetaML by systematically replacing explicit substitu-
tions with meta-environments (Section 5). For Environmen-
tal MetaML, we present its structural operational semantics,
reduction semantics and abstract machine semantics.
(4) To evince the correctness of refining semantics, we

explain how to rigorously model fresh variables (Section
6.1), uncover a global invariant on variable bindings (Sec-
tion 6.2), and leverage three proof strategies to establish the
equivalences of semantics (Section 6.3).

2

https://doi.org/10.1145/3136040.3136047
https://doi.org/10.1145/3136040.3136047
https://doi.org/10.1145/3136040.3136047

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

This development is depicted in the diagram below. It
cannot be presented in full in this paper for lack of space.
Interested readers may consult the first author’s thesis [7].

MetaML Static Analysis

Explicit
MetaML

Suspended
MetaML

Environmental
MetaML

Sec. 3

Long Term Goal

Thm. 5.4
Sec. 6

Sec. 4 Sec. 5

[26]

2 Formal Semantics of MetaML
We first review the syntax of MetaML based on [24].

2.1 Syntax
The terms of MetaML are defined as follows:

t ∈ Term x ,y, z,u ∈ Var n, i, j ∈ N
t ::= x | t t | λx .t | ⟨t⟩ | ∼t | !t | n | t + t

MetaML uses staging annotations to explicitly control the
evaluation order of terms.
A code operation ⟨t⟩ indicates delaying a computation t .

If a code operation evaluates to itself, it is a code value. For
example, ⟨3 + 7⟩ evaluates to ⟨3 + 7⟩.
A run operation !t indicates executing a delayed compu-

tation t . For example, !⟨3 + 7⟩ evaluates to 10.
A splice operation∼t indicates splicing a delayed computa-

tion t into the context of a delayed computation. For example,
⟨∼⟨3 + 7⟩ ∗ ∼⟨3 + 7⟩⟩ evaluates to ⟨(3 + 7) ∗ (3 + 7)⟩.
As explained in [24], code, run and splice are analogous

to LISP’s back-quote, eval and comma respectively.
To explicitly regulate under what circumstances run and

splice can eliminate code brackets, we introduce the concept
of levels. The level of a term is the difference of the numbers
of surrounding brackets and surrounding splices. For exam-
ple, 3 in ⟨∼ ⟨3 + 7⟩ ∗ 10⟩ is at level 2 − 1 = 1. We use levels
to finely distinguish subclasses of terms:

t i ∈ Termi

t0 ::= x | t0 t0 | λx .t0 | ⟨t1⟩ | !t0 | n | t0 + t0
t i+1 ::= x | t i+1 t i+1 | λx .t i+1 | ⟨t i+2⟩ | ∼t i | !t i+1

| n | t i+1 + t i+1

A value at level i is a level-i term that represents a result
of computation at its indicated level.

vi ∈ Valuei
v0 ::= λx .t0 | ⟨v1⟩ | n
v1 ::= x | v1 v1 | λx .v1 | ⟨v2⟩ | !v1 | n | v1 +v1

vi+2 ::= x | vi+2 vi+2 | λx .vi+2 | ⟨vi+3⟩ | ∼vi+1 | !vi+2
| n | vi+2 +vi+2

The denotable terms are terms that are substitutable for
variables in the semantics. In particular, variables are deno-
table to represent renaming.

w ∈ Denot
w ::= x | v0

Properties. We elaborate a few observations from [19] about
the syntax. Being a cornerstone for establishing the equiv-
alences of semantics, these observations shall be carefully
preserved throughout the process of refining semantics.
First, the sets Termi contain strictly more terms as the

level i increases. For example, the term ∼x can have any level
higher than 0 and the term ∼∼x can have any level higher
than 1.
Second, every term has a level. To make a conventional

single-stage program multi-stage, we can experiment anno-
tating the program with various combinations of staging
annotations as long as the program remains at level 0.

Third, there is a one-to-one correspondence between the
subclasses of terms and the subclasses of values. On one hand,
a value at some non-zero level is a term at the next lower level.
This justifies the semantics of run: if we have a level-i value
⟨t⟩, then t is a level-(i + 1) value but not necessarily a level-i
value. Removing the brackets makes t a level-i term and
allows it to reduce at level i . Although running happens only
at level 0, this uniformity makes it clear that we can reason
seamlessly about multi-stage programs at levels higher than
0 and 1 in the same way that we reason about two-stage
programs. One the other hand, a term at some level is a value
at the next higher level. We can always delay a computation
by putting it into brackets.

Fourth, a level-i value represents the result of a computa-
tion at level i . Hence a level-i value must be a level-i term.
This corresponds to our intuition and later formalisation of
level-indexed evaluation.

2.2 Substitutional Structural Operational Semantics
A substitutional big-step semantics for MetaML is presented
in [24]. Since we derive a small-step abstract machine seman-
tics, it is natural to start from an equivalent substitutional
structural operational semantics as our reference semantics1.
The structural operational semantics comprises a family

of level-indexed transition relations t i1 −→i t i2 in Figure 1.
Not every term has a corresponding transition rule. There

is no (ref-0) that reduces a variable at level 0, analogous
to the fact that evaluating a free variable in a single-stage
language is disallowed. There is no (splice-0) because a splice
operation is always at some level higher than 0. There are
no (lambda-0), (ref-(i+1)) and (num-i) because values are
irreducible.

The (app-0) rule appeals to substitution. Though standard,
we present its definition because it contributes to the process
of refining semantics, especially to deriving Explicit MetaML.
In case (4), FV (t) denotes the free variables of the term t .
The environmental abstract machine that we are heading
towards should correctly manage names without appealing
to alpha-equivalence. We make the same design choice here.

1The first author’s thesis [7] has proved the correctness of the reference
semantics with respect to the substitutional big-step semantics in [24].

3

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

−→i⊆ Termi × Termi

t i+11 −→i+1 t i+12

λx .t i+11 −→i+1 λx .t i+12
(lambda-(i+1))

t i11 −→
i t i12

t i11 t
i
2 −→

i t i12 t
i
2
(appL-i)

t i21 −→
i t i22

vi1 t
i
21 −→

i vi1 t
i
22

(appR-i)

(λx .t0) v0 −→0 t0[v0/x]
(app-0)

!⟨v1⟩ −→0 v1
(run-0)

t i1 −→
i t i2

!t i1 −→
i !t i2

(run-i)
t i+11 −→i+1 t i+12

⟨t i+11 ⟩ −→i ⟨t i+12 ⟩
(code-i)

∼⟨v1⟩ −→1 v1
(splice-1)

t i1 −→
i t i2

∼t i1 −→
i+1 ∼t i2

(splice-(i+1))

t i11 −→
i t i12

t i11 + t
i
2 −→

i t i12 + t
i
2
(plusL-i)

t i21 −→
i t i22

vi1 + t
i
21 −→

i vi1 + t
i
22

(plusR-i)
n = n1 + n2

n1 + n2 −→0 n
(plus-0)

·[·/·] ⊆ (Term × Denotable × Var) × Term
x[w/x] = w (1)

x1[w/x2] = x1 where x1 . x2 (2)
(t1 t2)[w/x] = (t1[w/x]) (t2[w/x]) (3)

(λx1.t0)[w/x2] = λx3.t0[x3/x1][w/x2]
where x3 < FV (λx1.t0)
∪FV (w) ∪ {x2} (4)

⟨t0⟩[w/x] = ⟨t0[w/x]⟩ (5)
(!t0)[w/x] = !t0[w/x] (6)
(∼t0)[w/x] = ∼t0[w/x] (7)

n[w/x] = n (8)
(t1 + t2)[w/x] = (t1[w/x]) + (t2[w/x]) (9)

Figure 1. Substitutional Structural Operational Semantics
of MetaML

We define an evaluator that takes a program as its input
and provides an answer as its output. Programs Prgm are
closed level-0 terms. Answers Ans are observable results of
evaluation.

evalSub : Prgm⇀ Ans

evalSub(t) =

func if t −→0∗ λx .t ′

0

code if t −→0∗ ⟨v1⟩
n if t −→0∗ n

Let −→i∗ denote the reflexive-transitive closure of −→i .

Example 2.1. To illustrate evaluation, consider the classic
puzzle program !⟨λy.∼((λx .⟨x⟩) (λx .⟨y⟩)) 0⟩ 5 from [25].
Evaluating it yields code because:

!⟨λy.∼((λx .⟨x⟩) (λx .⟨y⟩)) 0⟩ 5 (app-0)
−→0 !⟨λy.∼⟨λx .⟨y⟩⟩ 0⟩ 5 (splice-1)
−→0 !⟨λy.(λx .⟨y⟩) 0⟩ 5 (run-0)
−→0 (λy.(λx .⟨y⟩) 0) 5 (app-0)
−→0 (λy.⟨y⟩) 5 (app-0)
−→0 ⟨5⟩

where the redex of each step is underlined, accompanied by
the name of the reduction rule on the right.

3 Explicit MetaML
Refining substitutional semantics to environmental seman-
tics is challenging for multi-stage languages. Substitutional
semantics model the process of performing substitutions im-
plicitly at the meta-language level. For example, the (app-0)
rule in Figure 1 reduces an application (λx .t0) v0 in one
step to the result of replacing each free occurrence of the
variable x in the term t0 by the value v , denoted by t0[v0/x].
In contrast, environmental semantics keep track of variable
bindings and replace variable references on demand. Unlike
single-stage languages such as ISWIM [11, 12], MetaML pro-
grams manipulate open code yet still respect lexical scoping,
causing complication in modelling variable bindings through
environments.
To bridge the gap between substitutional and environ-

mental semantics, we leverage the concept of explicit sub-
stitutions [1, 3, 15], which internalises how substitutions
percolate through a term at the semantical level. As a result,
the (app-0) rule becomes

(λx .t0) v0 −→0 t0[x := v0]
(app-0)

where [x := v0] denotes an explicit substitution. An explicit
substitution [x := w] may take several steps to percolate
through a term t , depending on how complex the term t is.
We call the resulting dialect Explicit MetaML.

3.1 Syntax
We treat MetaML terms as source terms in Explicit MetaML.
We define runtime terms, values and denotable terms for
Explicit MetaML as follows:

t i ∈ RTermi vi ∈ Valuei w ∈ Denot
t0 := ... | λx .t0 | t0[x := w]
t i+1 := ... | λx .t0 | t i+1[x := w]
v0 := ... |✘✘✘❳❳❳λx .t0 λx .t0

vi+1 := ... | λx .t0
w := ...

Weuse “...” to represent the same expressions as inMetaML’s
syntax, and “✘✘❳❳eSub eExp” to denote that the expression eSub
in MetaML’s syntax is replaced by the expression eExp in
Explicit MetaML.

Like MetaML, Explicit MetaML ensures that a value at one
level must remain a value at any higher level. To preserve
this property in the presence of explicit substitutions, we
distinguish between level-0 source lambda abstractions λx .t0
and level-0 evaluated lambda abstractions λx .t0. We demon-
strate the significance of this distinction after presenting the
semantics. For brevity, we call λx .vi+1 a level-(i + 1) lambda
value and call λx .t0 an underlined lambda abstraction or a
level-0 lambda value.

4

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

−→i⊆ RTermi × RTermi

· · · λx .t0 −→0 λx .t0
(lambda-0)

(λx .t0) v0 −→0 t0[x := v0]
(app-0)

t i1 −→
xi t i2

t i1 −→
i t i2

(inj-subst)

−→xi⊆ RTermi × RTermi

x[x := w] −→xi w
(var-eq-subst)

x1[x2 := w] −→xi x1
where x1 . x2 (var-df-subst)

n[x := w] −→xi n
(num-subst)

(t i1 + t
i
2)[x := w] −→xi (t i1[x := w]) + (t i2[x := w])

(plus-subset)

(t i1 t
i
2)[x := w] −→xi (t i1[x := w]) (t i2[x := w])

(app-subst)

x3 < FV (λx1.t i) ∪ FV (w) ∪ {x2}
(λx1.t i)[x2 := w] −→xi λx3.t i [x1 := x3][x2 := w]

(lam-subst)

x3 < FV (λx1.t0) ∪ FV (w) ∪ {x2}
(λx1.t0)[x2 := w] −→xi λx3.t0[x1 := x3][x2 := w]

(lamu-subst)

⟨t i+1⟩[x := w] −→xi ⟨t i+1[x := w]⟩
(code-subst)

(!t i)[x := w] −→xi !t i [x := w]
(run-subst)

(∼t i)[x := w] −→x(i+1) ∼t i [x := w]
(splice-subst)

t i1[x1 := w1] −→xi t i2

t i1[x1 := w1][x2 := w2] −→xi t i2[x2 := w2]
(subst-subst)

Figure 2. Structural Operational Semantics of Explicit
MetaML

3.2 Structural Operational Semantics
Figure 2 presents the semantics of Explicit MetaML. We use
· · · to represent the same rules as in the previous semantics.
Most transition rules are the same as MetaML. The

(lambda-0) rule introduces level-0 values. There is no equiva-
lent of the (lambda-(i+1)) rule for underlined lambda abstrac-
tions because an underlined lambda abstraction is a value
at any level. The (app-0) rule replaces the meta-language
substitution [v0/x] with the explicit substitution [x := v0].
The (inj-subst) rule says every substitution step counts as a
computation step.
The substitution transition relations −→xi describe how

explicit substitutions interact with other terms in the lan-
guage. Each rule except (lamu-subst) and (subst-subst) cor-
responds to an equation of MetaML’s implicit substitution
·[·/·] from Figure 1. The (subst-subst) rule implies that only
a substitution transition may happen underneath an explicit

substitution. The (lamu-subst) rule accommodates the newly
devised underlined lambda abstractions and is analogous to
the (lam-subst) rule.

Example 3.1. To see the need for underlined lambda ab-
stractions, consider the program (λx1.⟨x1⟩) ((λx2.(λx3.x2)) w)
where x2 . x3.

If we had not introduced the underlined lambda abstrac-
tion, its reduction would be:

(λx1.⟨x1⟩) ((λx2.(λx3.x2)) w)
−→0∗ (λx1.⟨x1⟩) λx4.x2[x3 := x4][x2 := w]

where x4 < FV (λx3.x2) ∪ FV (w) ∪ {x2}
−→0 ⟨x1⟩[x1 := (λx4.x2[x3 := x4][x2 := w])]
−→0∗ ⟨ λx4.x2[x3 := x4][x2 := w] ⟩
−→0∗ ⟨λx4.w⟩

At first, the boxed lambda abstraction is a level-0 value. How-
ever, after substituting x1, the boxed lambda abstraction reap-
pears at level 1. We can apply the (lambda-(i+1)) rule to
evaluate the body of the lambda abstraction at level 1. This
violates the property that a value at one level must remain a
value at any higher level, and eventually leads to an incorrect
evaluation result. To avoid this, we make each level-0 lambda
abstraction single-step to its underlined counterpart, which
is a value at all levels. Thus by Explicit MetaML, we have:

(λx1.⟨x1⟩) ((λx2.(λx3.x2)) w)
−→0∗ (λx1.⟨x1⟩) λx4.x2[x3 := x4][x2 := w]

where x4 < FV (λx3.x2) ∪ FV (w) ∪ {x2}
−→0 ⟨x1⟩[x1 := (λx4.x2[x3 := x4][x2 := w])]
−→0∗ ⟨ λx4.x2[x3 := x4][x2 := w] ⟩

We define an evaluator in terms of Explicit MetaML:

evalExp : Prgm⇀ Ans

evalExp(t) =
{
func if t −→0∗ λx .t ′

0

...

This evaluator is equivalent to the one defined in terms of
substitutional structural operational semantics of MetaML.

Proposition 3.2. evalSub = evalExp.

Proof. See Section 6.3 for proof strategies for this proposition
and the succeeding four propositions. �

4 Suspended MetaML
To more closely resemble the behaviour of environmental
semantics, we first reconsider how to represent functions.
We refine what forms of lambda abstractions are functions
as opposed to code. Conventional environmental semantics
represent functions as closures. As a comparison, Explicit
MetaML represents functions as underlined lambda abstrac-
tions. Motivated by the concept of closures [11], we delay
explicit substitutions that surround any level-0 lambda value
until the lambda abstraction is applied.

5

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

We then reconsider how to represent applications. We
refine how variable bindings are updated by applications. In
conventional environmental semantics, when a closure is
applied, the environment of the closure is extended with a
new variable binding. Any previous binding for the variable
is overridden. For semantics with explicit substitutions, to
perform an application in an environmental manner, we
promote the substitution for the lambda bound variable to the
front and override any existing explicit substitution for that
variable. That is, a level-0 application (λx .t0)[xi := wi] v0

makes a single-step transition to t0[x := v0][xi := wi]. We
call the resulting dialect Suspended MetaML.

4.1 Syntax
Starting from the syntax of Explicit MetaML, we define
runtime terms, values and denotable terms for Suspended
MetaML as follows:

t i ∈ RTermi vi ∈ Valuei w ∈ Denot
t0 := ... |✘✘✘✘✘❳❳❳❳❳t0[x := w] t0[x := w]
t i+1 := ... |✘✘✘✘✘✘❳❳❳❳❳❳t i+1[x := w] t i+1[x := w] | λ̂x .t i+1
vi := ... |✟✟✟❍❍❍λx .t0 (λx .t0)[x := w]
w := ...

In Explicit MetaML, a level-0 lambda value λx .t0 is a value
at any level. Since Suspended MetaML no longer pushes ex-
plicit substitutions into an underlined lambda abstraction,
a level-0 lambda value surrounded by explicit substitutions,
(λx .t0)[x := w], is a value at any level. Another significant
difference in Suspended MetaML is the introduction of the
hatted lambda abstraction λ̂x .t i+1, which accommodates
changes in semantics to perform applications in an envi-
ronmental manner. We explain its necessity in more detail
after presenting the semantics.

4.2 Structural Operational Semantics
Figure 3 presents the semantics of Suspended MetaML. The
(app-0) rule is refined from the following rule:

x0 < FV (λx .t0) ∪⋃
i (FV (wi) ∪ {xi })

(λx .t0)[xi := wi] v0 −→0 t0[x := x0][xi := wi][x0 := v0]

The above rule is semantically correct. However, we want
to eliminate renaming in any level-0 application because
conventional environmental semantics do not rename when
performing an application.
Observe that if FV (v0) ∩ (⋃i {xi }) = ∅, we can promote

the substitution [x0 := v0] to the front of the explicit sub-
stitutions [xi := wi]. Then we can eliminate renaming the
lambda bound variable x by combining two explicit substi-
tutions [x := x0] and [x0 := v0] to one [x := v0]. We can
prove that the condition FV (v0) ∩ (⋃i {xi }) = ∅ is always
satisfied when the (app-0) rule applies during evaluation of
a program. This fact is discussed and justified in Section 6.2.

−→i⊆ RTermi × RTermi

· · · (λx .t0)[x j := w j] −→0 (λx .t0)[x j := w j]
(lambda-0)

t i+1 < Valuei+1 xN is fresh

λx .t i+1 −→i+1 λ̂xN .t
i+1[x := xN]

(lambda-(i+1)-t)

λ̂x .vi+1 −→i+1 λx .vi+1
(lambda-(i+1)-v)

t i+11 −→i+1 t i+12

λ̂x .t i+11 −→i+1 λ̂x .t i+12
(lambda-(i+1)-r)

(λx .t0)[xi := wi] v0 −→0 t0[x := v0][xi := wi]
(app-0)

−→xi⊆ RTermi × RTermi

· · · No (lamu-subst)
xN is fresh

(λx1.t i+1)[x2 := w] −→x(i+1)

λxN .t
i+1[x1 := xN][x2 := w]

(lam-subst)

Figure 3. Structural Operational Semantics of Suspended
MetaML

Since we want to ultimately develop an environmental
operational semantics for MetaML, the (app-0) rule promotes
the substitution for the underlined lambda bound variable
to the front, superseding any existing explicit substitution
for that variable. This behaviour resembles the updating of
an environment in a conventional environmental semantics.
Suspended MetaML replaces Explicit MetaML’s

(lambda-(i+1)) rule with three (lambda-(i+1)) rules. To eval-
uate a level-(i + 1) lambda abstraction, if its body is not a
level-(i + 1) value, we first apply the (lambda-(i+1)-t) rule
to rename the lambda bound variable to a fresh variable
and replace λ by λ̂ to indicate such a renaming is in process.
To prevent unnecessary renaming, it is important to check
whether the lambda abstraction is already a value before re-
naming the lambda bound variable. Checking this is a deep
syntactic operation in Suspended MetaML but becomes a
shallow check in our abstract machine. Then we repeatedly
apply the (lambda-(i+1)-r) rule to reduce its body to a value.
Finally we apply the (lambda-(i+1)-v) rule to change λ̂ back
to λ. Suspended MetaML forces this renaming to make the
(app-0) rule sound with respect to Explicit MetaML.

The (lam-subst) rule only concerns levels higher than 0
because the level-0 case is covered by the (lambda-0) rule.
There is no (lamu-subst) rule because the concerned term is
a value at any level.

The freshness condition “xN is fresh” means that the vari-
able xN does not appear in the current term being evaluated
nor in the surrounding scope. A rigorous explanation of the
freshness condition is presented in Section 6.1.

Example 4.1. To see the need for hatted lambda abstrac-
tions, consider the program !⟨λy.∼(((λy.(λx .x)) n) ⟨y⟩)⟩.

6

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

If we had not introduced the hatted lambda abstraction,
its transitions would be:

!⟨λy.∼(((λy.(λx .x)) n) ⟨y⟩)⟩
−→0∗ !⟨λy.∼((λx .x)[y := n] ⟨y⟩)⟩
−→0 !⟨λy.∼(x[x := ⟨y⟩][y := n])⟩
−→0∗ !⟨λy.∼⟨n⟩⟩
−→0∗ λy.n

The boxes highlight a critical mistake during evaluation.
For the boxed application (λx .x)[y := n] ⟨y⟩, the condition
FV (⟨y⟩) ∩ {y} = ∅ is not satisfied. The free variable of the
operand ⟨y⟩, i.e., the variable y, clashes with an existing sub-
stitution [y := n] on the abstraction. Notice that the (locally)
free variable y is bound by a lambda in the surrounding con-
text. Generally, for a level-0 application, the operand can
have free variables only as a result of performing an evalu-
ation under lambdas at levels higher than 0. To avoid such
variable clashes, whenever we go under a lambda during
evaluation at a level higher than 0, we need to rename the
lambda bound variable to a fresh variable:

!⟨λy.∼(((λy.(λx .x)) n) ⟨y⟩)⟩
−→0 !⟨λ̂z.(∼(((λy.(λx .x)) n) ⟨y⟩))[y := z]⟩

where z < {x ,y}
−→0∗ !⟨λ̂z.∼((λx .x)[y := n][y := z] ⟨z⟩)⟩
−→0 !⟨λ̂z.∼(x[x := ⟨z⟩][y := n][y := z])⟩
−→0∗ !⟨λ̂z.∼⟨z⟩⟩
−→0∗ λz.z

For this boxed application, the condition FV (⟨z⟩) ∩ {y} = ∅
is satisfied.

We define an evaluator in terms of Suspended MetaML:

evalSus : Prgm⇀ Ans

evalSus(t) =
{
func if t −→0∗(λx .t ′0)[xi := wi]
...

This evaluator is equivalent to the one defined using the
substitutional structural operational semantics of MetaML.

Proposition 4.2. evalSub = evalSus.

5 Environmental MetaML
Suspended MetaML is peculiar in the sense that the top-
level structure of a lambda value surrounded by zero or
more explicit substitutions is not immediately recognisable.
For example, the term (λx .t0)[xi := wi] truly represents
((...(((λx .t0)[x1 := w1])[x2 := w2])...)[xi := wi]).... To ensure
that its top-level structure is a lambda value, we must dive
down through the cascaded explicit substitutions to search
for a lambda abstraction.

For a term surrounded by explicit substitutions, t[xi := wi],
if every denotable term wi is closed, it is a natural step to

replace the explicit substitutions with a corresponding en-
vironment. However, MetaML allows substituting an open
term for a variable. The term of some inner explicit substitu-
tion in a cascade may have free variables that are bound by
outer substitutions. For example, in Suspended MetaML, we
have

!⟨λy.(∼((λx .⟨x⟩) (λz.y)) 0)⟩ 5
−→0∗ ⟨ y[z := 0][y := u][y := u][u := 5] ⟩

where u < {x ,y, z}. In the boxed term, the variable y is
bound to the variable u, which in turn is bound to 5. Can
we represent the explicit substitutions that surround a term
by an environment? The answer is negative unfortunately.
If the boxed term was represented by pairing the variable
y with the environment ρ = {(z, 0), (y,u), (u, 5)}, looking
up the variable y in the environment ρ would return the
variable u solely, which would no longer be bound to 5.

We systematically replace cascaded explicit substitutions
with meta-environments instead of environments. A meta-
environment2 is a finite sequence of environments, among
which the free variables of one environment are bound by
the next environment. Evaluating a variable with a meta-
environment returns the lookup result of the variable in the
first environment paired with the remaining environments of
the meta-environment. For example, the boxed term is repre-
sented by pairing the variable y with the meta-environment
(ρ1; ρ2) where ρ1 = {(z, 0), (y,u)} and ρ2 = {(u, 5)}. One
small-step of transition returns the variable u paired with
the meta-environment ρ2 because ρ1(y) = u. Another step
returns 5 because ρ2(u) = 5. We call the resulting dialect
Environmental MetaML.

5.1 Syntax
Starting from the syntax of Suspended MetaML, we define
runtime terms, values, denotable terms and configurations
for Environmental MetaML as follows.

t i ∈ RTermi vi ∈ Valuei w ∈ Denot
ci ∈ Confi ρ ∈ Env = Var

fin→ Denot
t0 := ... |✟✟✟❍❍❍λx .t0 |✘✘✘✘✘❳❳❳❳❳t0[x := w] | Iλx .t0, ρ∗J
t i+1 := ... |✟✟✟❍❍❍λx .t0 |✘✘✘✘✘✘❳❳❳❳❳❳t i+1[x := w] |✘✘✘✘❳❳❳❳λ̂x .t i+1 | Iλx .t0, ρ∗J

vi := ... |✘✘✘✘✘✘✘❳❳❳❳❳❳❳(λx .t0)[x := w] Iλx .t0, ρ∗J
w := ...
c0 := v0 | c0 c0 | λx .c0 | Gt0, ρ∗H

| ⟨c1⟩ |!c0 | c0 + c0
ci+1 := vi+1 | ci+1 ci+1 | λx .ci+1 | Gt i+1, ρ∗H

| ⟨ci+2⟩ | ∼ci |!ci+1 | ci+1 + ci+1

An environment ρ ∈ Env is a total function from the set
of variables to the set of denotable terms with the restriction
that only a finite number of variables do not map to them-
selves. An environment is denoted by listing all non-identity
2The concept of meta-environments is analogous to meta-continuations [4]
in the context of delimited control.

7

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

mappings {(xi ,wi)}. The identity environment is denoted
by ∅.
A meta-environment ρ∗ ∈ Env∗ is a finite sequence of

environments. An empty meta-environment is denoted by ϵ .
A term paired with a meta-environment, Gt i , ρ∗H or

Iλx .t0, ρ∗J, is called a closure. A level-0 lambda abstraction
paired with a meta-environment, Iλx .t0, ρ∗J, is called a
closure value. A closure that is not a value,Gt i , ρ∗H, is called
a non-value closure. A closure makes its top-level structure
immediately evident. For example, it is immediately recognis-
able that the top-level structure of the closure Iλx .t0, ρ∗J
is a level-0 lambda abstraction λx .t0 without having to dive
into a cascade of explicit substitutions.

In a conventional single-stage programming language, for
a closure consisting of a term and an environment, the term
must be closed by the environment. Variable bindings in
closures are more complicated in MetaML because an en-
vironment may bind a variable to an open term. As for a
closure Gt , (ρ1; ρ2; ...)H, the free variables of the term t
are bound by the first environment ρ1, the free variables of
the closure Gt , ρ1H must be bound by the second environ-
ment ρ2 and so on. In the end, the closure Gt , (ρ1; ρ2; ...)H
may even still have free variables, which are bound by its
surrounding context.

The design choice of closures and closure values resembles
the original interpreter of MetaML [25]. To ensure that any
variable that has been eliminated by some substitution or
renaming does not escape from the scope of the substitution
or renaming, the interpreter uses a delayed environment
called a cover. A cover works like a normal environment
on non-function terms. If a cover encounters a function,
the substitutions of the cover are delayed and are only per-
formed on the result of calling the function. Analogously, in
Environmental MetaML, environments on a level-0 lambda
abstraction are delayed, as modelled by closure values. These
environments work like normal environments on the result
of applying the level-0 lambda abstraction.

5.2 Structural Operational Semantics
Figure 4 presents the structural operational semantics of
Environmental MetaML. Unlike our previous dialects of
MetaML, Environmental MetaML reduces configurations
rather than (runtime) terms. The (app-0) rule models how to
perform an application as updating the meta-environment,
which completes the unfinished job of its counterpart in Sus-
pended MetaML. The (run-0) rule executes a code value at
level 0. The value v1 must be paired with the initial meta-
environment (∅; ϵ) in order to make transitions at level 0. The
(-env) rules specify how to evaluate a closure. The (lam-0-env)
rule turns a closure into a closure value. The (lam-(i+1)-env)
rule combines Suspended MetaML’s (lambda-(i+1)-t) and
(lam-subst) rules. To evaluate a lambda abstraction at a level
higher than 0, before diving into its body, we must rename

−→i⊆ Confi × Confi

ci+11 −→i+1 ci+12

λx .ci+11 −→i+1 λx .ci+12
(lambda-(i+1))

ci11 −→
i ci12

ci11 c
i
2 −→

i ci12 c
i
2
(appL-i)

ci21 −→
i ci22

vi1 c
i
21 −→

i vi1 c
i
22

(appR-i)

Iλx .t0, (ρ; ρ∗)J v0 −→0 Gt0, (ρ[x 7→ v0]; ρ∗)H
(app-0)

ci1 −→
i ci2

!ci1 −→
i !ci2

(run-i)
!⟨v1⟩ −→0 Gv1, (∅; ϵ)H

(run-0)

ci+11 −→i+1 ci+12

⟨ci+11 ⟩ −→i ⟨ci+12 ⟩
(code-i)

ci1 −→
i ci2

∼ci1 −→
i+1 ∼ci2

(splice-(i+1))

∼⟨v1⟩ −→1 v1
(splice-1)

ci11 −→
i ci12

ci11 + c
i
2 −→

i ci12 + c
i
2
(plusL-i)

ci21 −→
i ci22

vi1 + c
i
21 −→

i vi1 + c
i
22

(plusR-i)
n = n1 + n2

n1 + n2 −→0 n
(plus-0)

Gλx .t0, ρ∗H −→0 Iλx .t0, ρ∗J
(lam-0-env)

xN is fresh
Gλx .t i+1, (ρ; ρ∗)H −→i+1

λxN .Gt i+1, (ρ[x 7→ xN]; ρ∗)H
(lam-(i+1)-env)

GIλx .t , ρ∗1J, ρ
∗
2H −→i Iλx .t , (ρ∗1 ; ρ

∗
2)J

(clov-env)

Gw, ϵH −→i w
(den-env)

Gx , (ρ; ρ∗)H −→i Gρ(x), ρ∗H
(var-env)

Gn, ρ∗H −→i n
(num-env)

Gt1 t2, ρ∗H −→i Gt1, ρ∗H Gt2, ρ∗H
(app-env)

G⟨t i+1⟩, ρ∗H −→i ⟨Gt i+1, ρ∗H⟩
(code-env)

G!t i , ρ∗H −→i !Gt i , ρ∗H
(run-env)

G∼t i , ρ∗H −→i+1 ∼Gt i , ρ∗H
(splice-env)

Gt1 + t2, ρ∗H −→i Gt1, ρ∗H +Gt2, ρ∗H
(plus-env)

Figure 4. Environmental MetaML: Structural Operational
Semantics

the lambda bound variable to a fresh variable that does not oc-
cur in the current configuration nor in its surrounding scope.
The (clov-env) rule concatenates two meta-environments.
The (den-env) rule discards the empty meta-environment.
The other (-env) rules correspond to the reduction rules of
Suspended MetaML’s substitution transition relations. Un-
like Explicit MetaML and Suspended MetaML, Environmen-
tal MetaML does not separate closure transitions from other
transitions because making transitions at the term position
of a closure is disallowed.
We define an evaluator in terms of the structural opera-

tional semantics of Environmental MetaML. To evaluate a

8

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

program t , we first pair it with the initial meta-environment
(∅; ϵ) to make it a configuration, and then pass it to the se-
mantics:

evalEnvSOS : Prgm⇀ Ans

evalEnvSOS(t) =

func if initc(t) −→0∗ Iλx .t ′

0
, ρ∗J

code if initc(t) −→0∗ ⟨v1⟩
n if initc(t) −→0∗ n

where initc(t) = Gt , (∅; ϵ)H. This evaluator is equivalent to
the one defined using substitutional structural operational
semantics of MetaML.

Proposition 5.1. evalSub = evalEnvSOS.

5.3 Reduction Semantics
Since a reduction semantics can be viewed as a concise repre-
sentation of an abstract machine, we first develop a reduction
semantics for Environmental MetaML.

We define evaluation contexts to regulate where reduction
may happen. An evaluation context Ei(j has an inner level
i and an outer level j. The inner level i specifies the level
of configurations that can fill the hole of the context. The
outer level j is the level of the configuration produced by the
context when the hole is filled.
The hole �i(i evaluation context can be filled by and

will produce a level-i configuration. Ei(j [ci] is a level-j
configuration constructed by filling the hole of the evalua-
tion context Ei(j with a level-i configuration ci . The lev-
els i and j in an evaluation context Ei(j can be related
in any of the following three ways: (1) i > j. For exam-
ple, a level-0 configuration !⟨λx .x⟩ can be represented as
(�[!�][⟨�⟩][λx .�])1(0[x]. (2) i = j. For example, a level-0
term I(λx .x), (∅; ϵ)J 7 can be represented as
(�[I(λx .x), (∅; ϵ)J �])0(0[7]. (3) i < j. For example, a
level-1 term ∼(I(λx .x), (∅; ϵ)J ⟨λy.y⟩) can be represented
as (�[∼�])0(1[I(λx .x), (∅; ϵ)J ⟨λy.y⟩].

The definition of evaluation contexts is motivated by the
structural rules of the structural operational semantics shown
in Figure 4. For example, the (code-i) rule says that a code
operation at level i can be evaluated by reducing its operand
at level i + 1. Since an evaluation context determines where
reduction may happen, we may replace the (code-i) rule by
an evaluation context (�[⟨�⟩])(i+1)(i and allow any level-
(i + 1) reduction to happen at the hole of the context.
Figure 5 presents the reduction semantics. Each notion

of reduction Ri corresponds to one reduction rule of the
structural operational semantics shown in Figure 4. Only a
few are presented due to space restrictions. The reduction
relations 7−→i respect performing any notion of reduction
R j in an evaluation context E j(i .
We define an evaluator in terms of this reduction seman-

tics, which we call evalEnvRed. Its definition is analogous to
that of the evaluator evalEnvSOS. In fact, these two evaluators
are equivalent.

Ri ⊆ Confi × Confi

...

Gλx .t0, ρ∗H R0 Iλx .t0, ρ∗J
(conf-lam-0)

Gλx .t i+1, (ρ; ρ∗)H Ri+1

λxN .Gt i+1, (ρ[x 7→ xN]; ρ∗)H
where xN is fresh
(conf-lam-(i+1))

GIλx .t , ρ∗1J, ρ
∗
2H Ri Iλx .t , (ρ∗1 ; ρ

∗
2)J
(conf-clov-i)

7−→i ⊆ Confi × Confi

t
j
1 R j t

j
2

E j(i [t j1] 7−→
i E j(i [t j2]

Figure 5. Environmental MetaML: Reduction Semantics

Proposition 5.2. evalEnvSOS = evalEnvRed.

5.4 Abstract Machine Semantics (MCEK Machine)
An abstract machine can be viewed as a concrete represen-
tation of the reduction semantics as it encodes a systematic
strategy to break a configuration into an evaluation context
and a redex. We develop an abstract machine semantics for
Environmental MetaML based on its reduction semantics.
An abstract machine models computation through state

transitions. A machine state comprises a level, a continua-
tion (i.e., an evaluation context) and a control string (i.e., a
configuration):

S ∈ State, ci ∈ Confi , vi ∈ Valuei , Ei(j ∈ Ecxti(j

S := ⟨i, Ei(0, ci ⟩r | ⟨i, Ei(0, ci ⟩f
| ⟨i, Ei(0, vi ⟩b | v0

The machine operates in four modes. Value mode v0 rep-
resents that the level-0 value v0 is the result of executing
the machine. Reduce mode ⟨i, Ei(0, ci ⟩r signifies that a
proper notion of reduction can be applied to the redex ci .
Focus mode ⟨i, Ei(0, ci ⟩f indicates searching downward
into the configuration ci for a redex to reduce. Build mode
⟨i, Ei(0, vi ⟩b returns the valuevi to the current evaluation
context Ei(0. A machine state ⟨i, Ei(0, ci ⟩ unloads to the
configuration Ei(0[ci] regardless of its mode. We lay out the
abstract machine semantics of Environmental MetaML in
Figure 6. We call it the MCEK machine, where M stands for
multi-stage, C stands for control, E stands for environment,
and K stands for continuation.

We define an evaluator in terms of the MCEK machine. To
evaluate a program t , we first build a level-0 machine state
in focus mode comprising the empty context�, the program
t and the initial meta-environment (∅; ϵ), and then pass it to

9

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

7−→mcek ⊆ State × State
Reduce rules: ⟨i, Ei(0, ci ⟩r

⟨0, E, Iλx .t0, (ρ; ρ∗)J v0⟩r 7−→mcek ⟨0, E, Gt0, (ρ[x 7→ v0]; ρ∗)H⟩f (r-app-0)
⟨0, E, !⟨v1⟩⟩r 7−→mcek ⟨0, E, Gv1, (∅; ϵ)H⟩f (r-run-0)
⟨1, E, ∼⟨v1⟩⟩r 7−→mcek ⟨1, E, v1⟩f (r-splice-1)

⟨0, E, n1 + n2⟩r 7−→mcek ⟨0, E, n⟩f where n = n1 + n2 (r-plus-0)
⟨0, E, Gλx .t0, ρ∗H⟩r 7−→mcek ⟨0, E, Iλx .t0, ρ∗J⟩f (r-conf-lam-0)

⟨i + 1, E, Gλx .t i+1, (ρ; ρ∗)H⟩r 7−→mcek ⟨i + 1, E, λxN .Gt i+1, (ρ[x 7→ xN]; ρ∗)H⟩f
where xN is fresh (r-conf-lam-(i+1))

⟨i, E, GIλx .t , ρ∗1J, ρ
∗
2H⟩r 7−→mcek ⟨i, E, Iλx .t , (ρ∗1 ; ρ

∗
2)J⟩f (r-conf-clov-i)

⟨i, E, Gw, ϵH⟩r 7−→mcek ⟨i, E, w⟩f (r-conf-den-i)
⟨i, E, Gx , (ρ; ρ∗)H⟩r 7−→mcek ⟨i, E, Gρ(x), ρ∗H⟩f (r-conf-var-i)

⟨i, E, Gn, ρ∗H⟩r 7−→mcek ⟨i, E, n⟩f (r-conf-num-i)
⟨i, E, Gt1 t2, ρ∗H⟩r 7−→mcek ⟨i, E, Gt1, ρ∗H Gt2, ρ∗H⟩f (r-conf-app-i)

⟨i, E, G⟨t i+1⟩, ρ∗H⟩r 7−→mcek ⟨i, E, ⟨Gt i+1, ρ∗H⟩⟩f (r-conf-code-i)
⟨i, E, G!t i , ρ∗H⟩r 7−→mcek ⟨i, E, !Gt i , ρ∗H⟩f (r-conf-run-i)

⟨i + 1, E, G∼t i , ρ∗H⟩r 7−→mcek ⟨i + 1, E, ∼Gt i , ρ∗H⟩f (r-conf-splice-(i+1))
⟨i, E, Gt1 + t2, ρ∗H⟩r 7−→mcek ⟨i, E, Gt1, ρ∗H +Gt2, ρ∗H⟩f (r-conf-plus-i)

Focus rules: ⟨i, Ei(0, ci ⟩f
⟨i, E, Gt , ρ∗H⟩f 7−→mcek ⟨i, E, Gt , ρ∗H⟩r (f-conf-i)

⟨i + 1, E, x⟩f 7−→mcek ⟨i + 1, E, x⟩b (f-var-(i+1))
⟨i, E, c1 c2⟩f 7−→mcek ⟨i, E[� c2], c1⟩f (f-appL-i)

⟨i, E, Iλx .t , ρ∗J⟩f 7−→mcek ⟨i, E, Iλx .t , ρ∗J⟩b (f-lambda-0)
⟨i + 1, E, λx .c⟩f 7−→mcek ⟨i + 1, E[λx .�], c⟩f (f-lambda-(i+1))

⟨i, E, ⟨c⟩⟩f 7−→mcek ⟨i + 1, E[⟨�⟩], c⟩f (f-code-i)
⟨i + 1, E, ∼c⟩f 7−→mcek ⟨i, E[∼�], c⟩f (f-splice-(i+1))

⟨i, E, !c⟩f 7−→mcek ⟨i, E[!�], c⟩f (f-run-i)
⟨i, E, n⟩f 7−→mcek ⟨i, E, n⟩b (f-num-i)

⟨i, E, c1 + c2⟩f 7−→mcek ⟨i, E[� + c2], c1⟩f (f-plusL-i)
Build rules: ⟨i, Ei(0, vi ⟩b

⟨0, �, v⟩b 7−→mcek v (b-value-0)
⟨i, E[� c2], v1⟩b 7−→mcek ⟨i, E[v1 �], c2⟩f (b-appL-i)
⟨0, E[v1 �], v2⟩b 7−→mcek ⟨0, E, v1 v2⟩r (b-appR-0)

⟨i + 1, E[v1 �], v2⟩b 7−→mcek ⟨i + 1, E, v1 v2⟩b (b-appR-(i+1))
⟨i + 1, E[λx .�], v⟩b 7−→mcek ⟨i + 1, E, λx .v⟩b (b-lambda-(i+1))
⟨i + 1, E[⟨�⟩], v⟩b 7−→mcek ⟨i, E, ⟨v⟩⟩b (b-code-(i+1))

⟨0, E[∼�], v⟩b 7−→mcek ⟨1, E, ∼v⟩r (b-splice-0)
⟨i + 1, E[∼�], v⟩b 7−→mcek ⟨i + 2, E, ∼v⟩b (b-splice-(i+1))

⟨0, E[!�], v⟩b 7−→mcek ⟨0, E, !v⟩r (b-run-0)
⟨i + 1, E[!�], v⟩b 7−→mcek ⟨i + 1, E, !v⟩b (b-run-(i+1))
⟨i, E[� + c2], v1⟩b 7−→mcek ⟨i, E[v1 +�], c2⟩f (b-plusL-i)
⟨0, E[v1 +�], v2⟩b 7−→mcek ⟨0, E, v1 +v2⟩r (b-plusR-0)

⟨i + 1, E[v1 +�], v2⟩b 7−→mcek ⟨i + 1, E, v1 +v2⟩b (b-plusR-(i+1))

Figure 6. Environmental MetaML: Abstract Machine Semantics

the MCEK machine:
evalMCEK : Prgm⇀ Ans

evalMCEK(t) =

func if inits(t) 7−→∗

mcek Iλx .t ′
0
, ρ∗J

code if inits(t) 7−→∗
mcek ⟨v1⟩

n if inits(t) 7−→∗
mcek n

where inits(t) = ⟨0, �, Gt , (∅; ϵ)H⟩f . This evaluator is
equivalent to the one defined using Environmental MetaML’s
reduction semantics.

Proposition 5.3. evalEnvRed = evalMCEK.

The MCEK machine is equivalent to our reference seman-
tics for MetaML.

Theorem 5.4. evalSub = evalMCEK.

Proof. By Propositions 5.1, 5.2 and 5.3. �

The MCEK machine has more machine state transitions
than strictly necessary. It is structured so that the each transi-
tion is determined by considering only one component of the
machine state. Felleisen et al. [6] simplified abstract machines
by (1) letting the machine exploit information from both the

10

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

control strings and the evaluation contexts, and (2) fusing
determined transitions. Adopting the same approach, we can
simplify our MCEK machine analogously. For example, rules
(b-appR-0) and (r-app-0) can be merged into one rule:

⟨0, E[v1 �], v2⟩b 7−→mcek ⟨0, E, Gt0, (ρ[x 7→ v0]; ρ∗)H⟩f .
The MCEK machine is compatible with Van Horn and

Might’s framework [26]. We can augment the MCEK ma-
chine with a store and direct any structure of unbounded
size through the store. After several transformations, the ma-
chine can be abstracted by restricting its address space and
allocation strategy. With this primary point of abstraction,
we get a sound and decidable control flow analysis, where
the precision of the analysis is determined by the structure
of the addresses used by the allocator.

6 Correctness
To evince the correctness of our approach, we explain how to
rigorously model fresh variables, uncover a critical global in-
variant on variable bindings, and leverage three proof strate-
gies to establish the equivalences of semantics.

6.1 Fresh Variables
In Suspended MetaML and Environmental MetaML, we in-
formally used the freshness condition “xN is fresh” to mean
that the variable xN has not occurred in the current term (or
configuration) being evaluated nor in its surrounding scope.
The freshness condition is intuitive to understand, but we
must introduce additional machinery to model it rigorously.
Doing so supports our correctness proofs.

6.1.1 Suspended MetaML
To track all variables in the term being evaluated and in
its surrounding scope, we add a set of active variables, i.e.,
variables that are not fresh, to the transition relations −→i

and −→xi of Suspended MetaML. For all rules, the active
variable component is preserved between the premise and
the conclusion. Furthermore, we change the (lambda-(i+1)-t)
rule:

t i+1 < Valuei+1 ✭✭✭✭✭❤❤❤❤❤xN is fresh xN < X

X ⊢ λx .t i+1 −→i+1 λ̂xN .t
i+1[x := xN]

(lambda-(i+1)-t)

We make the same change to the (lam-subst) rule.
To apply the semantics to a program, the active variable

set X is initialised to contain all variables of the program. A
multi-step transition must update the active variable set X
for each underlying single-step:

Var(t i) ⊆ X
X ⊢ t i −→i∗ t i

(zero)

X ⊢ t i1 −→i t i2 Var(t i1) ⊆ X
X ∪ Var(t i2) ⊢ t i2 −→i∗ t i3

X ⊢ t i1 −→i∗ t i3
(more)

6.1.2 Environmental MetaML
We make the same changes as above to the structural opera-
tional semantics of Environmental MetaML.

For the reduction semantics, we first change every notion
of reduction ci1 Ri ci2 by adding a component for active
variables:

X ⊢ ci1 R ci2
We refine the freshness condition “xN is fresh” of the
(conf-lam-(i+1)) rule to “xN < X”. Next we add an active
variable component to the reduction relations 7−→i :

X ⊢ c j1 R j c j2

X ⊢ E j(i [c j1] 7−→i E j(i [c j2]
where the active variable setX contains the variables that ap-
pear in the configuration E j(i [c j1] or its surrounding scope.

An MCEK machine state contains all information needed
to check the freshness of a variable: the current config-
uration and its surrounding scope are the control string
and the continuation respectively. For the (r-conf-lam-(i+1))
rule, the freshness condition “xN is fresh” is refined to
“xN < Var(E[Gλx .t i+1, (ρ; ρ∗)H])” where the configuration
Gλx .t i+1, (ρ; ρ∗)H is the control string and the evaluation
context E is the continuation.

6.2 Well-boundness
MetaML sometimes binds variables to open terms. We un-
cover a global invariant on variable bindings, which we call
well-boundness, that justifies reordering explicit substitutions
in Suspended MetaML to perform applications in an envi-
ronmental manner.

6.2.1 Suspended MetaML
For any subterm t i11 of a program t01 during evaluation, we
want to ensure that all its free variables are bound in its sur-
rounding scope. Suppose t i11 −→i t i12. The (subst-subst) and
(lambda-(i+1)-r) rules preserve the invariant that the free
variables of t i1 must be bound by either explicit substitutions
or by hatted lambda bound variables in the surrounding
scope. To keep track of the variables bound by these two
means, we augment the transition relations −→i and −→xi

with two more components U and V . The new relations
have the formU;V ⊢ t −→i t ′ andU;V ⊢ t −→xi t ′. The
variable set U tracks free variables of the term t (and the
term t ′ as well by a property) that are bound in the surround-
ing scope by explicit substitutions or hatted lambda bound
variables. The variable setV tracks those bound by hatted
lambdas due to their special interest to the well-boundness
judgement that is introduced soon.
Almost all rules merely propagate U and V . For the

(lambda-(i+1)-r) rule, we have:

U ∪ {x};V ∪ {x} ⊢ t i+11 −→i+1 t i+12

U;V ⊢ λ̂x .t i+11 −→i+1 λ̂x .t i+12

(lambda-(i+1)-r)

11

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

⊢ wb ⊆ P(Var) × P(Var) × RTerm

U;V ⊢ x wb
where x ∈ U

U;V ⊢ t1 wb U;V ⊢ t2 wb
U;V ⊢ t1 t2 wb

U ∪ {x};V ⊢ t wb
U;V ⊢ λx .t wb where x < V

U ∪ {x};V ⊢ t wb
U;V ⊢ λx .t wb where x < V

U ∪ {x};V ∪ {x} ⊢ t wb
U;V ⊢ λ̂x .t wb

where x < V

U;V ⊢ t wb
U;V ⊢ ⟨t⟩ wb

U;V ⊢ t wb
U;V ⊢∼ t wb

U;V ⊢ t wb
U;V ⊢!t wb

U;V ⊢ n wb

U;V ⊢ t1 wb U;V ⊢ t2 wb
U;V ⊢ t1 + t2 wb

U;V ⊢ w wb U ∪ {x};V ⊢ t wb
U;V ⊢ t[x := w] wb where x < V

Figure 7. Well-boundness Judgement for Suspended
MetaML

That is, when diving into the body of a hatted lambda ab-
straction λ̂x .t i+11 , we update the variable setU to record that
any free appearance of the variable x in the term t i+11 must
be bound by its surrounding scope, and in particular, the
variable set V , to record that such a free variable must be
bound by a hatted lambda bound variable.

For the (subst-subst) rule, we have:

U ∪ {x2};V ⊢ t i1[x1 := w1] −→xi t i2

U;V ⊢ t i1[x1 := w1][x2 := w2] −→xi

t i2[x2 := w2] (subst-subst)

That is, when making a substitution transition underneath
the outermost explicit substitution [x2 := w2], we update
the variable set U to record that any free appearance of the
variable x2 in t i1[x1 := w1] must be bound by its surrounding
scope.

Well-boundness Judgement and Properties. Using the
well-boundness judgement in Figure 7, we formalise the
global invariant that the free variables of any subterm of a
program during evaluation must be bound by either explicit
substitutions or by hatted lambda bound variables in the
surrounding scope.
Suppose t11 is a subterm of a program t01 during evalu-

ation. We immediately have ∅; ∅ ⊢ t01 wb. Observe that a
sub-derivation of ∅; ∅ ⊢ t01 wb must be the derivation of
U;V ⊢ t11 wb for some variable setsU andV . The variable
set U tracks all free variables of the subterm t11 that are
bound in the surrounding scope. We observe the following

property that gives an upper bound on the free variables of
a well bound term.

Proposition 6.1. IfU;V ⊢ t wb, then FV (t) ⊆ U.

The variable set V in U;V ⊢ t11 wb tracks the free
variables of the subterm t11 that are bound by hatted lamb-
das in the surrounding scope. Suppose t11 is an application
(λx .t0)[xi := wi] v0 that is reducible by the (app-0) rule.
Since the (app-0) rule is not a substitution transition, it can-
not be applied under any explicit substitution. Thus the free
variables of v0 must be bound by hatted lambdas in its sur-
rounding context, which are tracked by the variable setV
of the judgement U;V ⊢ (λx .t0)[xi := wi] v0 wb. By the
definition of the well-boundness judgement, we have xi < V .
Hence the condition FV (v0)∩(⋃i {xi }) = ∅ is satisfied, which
guarantees the correctness of the (app-0) rule.

The well-boundness judgement cooperates well with the
multi-step transition relations −→i∗. The second property
says the former is preserved by the latter.

Proposition 6.2. If U;V ⊢ t i1 wb, Var(t i1) ⊆ X, V ⊆ U ⊆
X andU;V;X ⊢ t i1 −→i∗ t i2, then U;V ⊢ t i2 wb.

As a corollary of the above properties, multi-step transi-
tioning preserves the closedness of runtime terms.

6.2.2 Environmental MetaML
Consider the structural operational semantics of Environ-
mental MetaML. As in Suspended MetaML, we track lambda
bound variables when diving into the body of a higher level
non-value lambda. In contrast to Suspended MetaML, we
never make transitions underneath an environment. Thus we
only need to track lambda bound variables in the surround-
ing scope. The new relation has the form V ⊢ c −→i c ′. It
says the free variables of the configuration c (and the con-
figuration c ′ as well by a property) must be bound in its
surrounding scope by lambda bound variables, which are
tracked by the variable setV .

Well-boundness Judgement and Properties. The
augmented transition rules and the well-boundness judge-
ment for Environmental MetaML are analogous to those
for Suspended MetaML. We omit their definition for lack
of space. Interested readers may consult the first author’s
thesis [7].
For the well-boundness judgement U;V ⊢ c wb, the

variable setU tracks all free variables of the configuration c
that are bound in the surrounding scope, and in particular,
the variable setV tracks those bound by higher level non-
value lambdas.

Proposition 6.3. IfU;V ⊢ c wb, then FV (c) ⊆ U.

Proposition 6.4. If V;V ⊢ ci1 wb, Var(ci1) ⊆ X, V ⊆ X
and V;X ⊢ ci1 −→i∗ ci2, then V;V ⊢ ci2 wb.

12

GPCE’17, October 23–24, 2017, Vancouver, Canada Rui Ge and Ronald Garcia

6.3 Proof Strategies
Our equivalence proofs can be categorised as (1) equating
two structural operational semantics, (2) equating a struc-
tural operational semantics and a reduction semantics, and
(3) equating a reduction semantics and an abstract machine
semantics. In the following exposition, for the sake of simplic-
ity, we pretend small-step transitions are defined on terms
rather than configurations.
Our strategy for equating two structural operational se-

mantics is motivated by the bisimulation proof method [14,
16]. Our strategy for equating a reduction semantics and
an abstract machine semantics is extracted from the proof
of the equivalence of the CC machine and a substitutional
reduction semantics for ISWIM in [6].

Equating Two Structural Operational Semantics. To
prove the equivalence of a structural operational semantics
for languageA (defined by the transition relation −→A) and
a structural operational semantics for languageB (defined by
the transition relation −→B), construct a bisimulation rela-
tion ≃ between their terms that has the following properties.

1. For any legal program, its initialisations in two lan-
guages are related, i.e.,∀p ∈ Prgm, initA(p) ≃ initB(p).

2. Related values are observationally indistinguishable,
i.e., if vA ≃ vB , then obsA(vA) = obsB(vB).

3. Canonisation:
(1) If vA ≃ tB , then tB −→∗

B vB and vA ≃ vB .
(2) If tA ≃ vB , then tA −→∗

A vA and vA ≃ vB .
4. Weak Bisimulation:

(1) If tA ≃ tB and tA −→A t ′A , then tB −→∗
B t ′B and

t ′A ≃ t ′B .
(2) If tA ≃ tB and tB −→B t ′B , then tA −→∗

A t ′A and
t ′A ≃ t ′B .

Equating StructuralOperational Semantics andReduc-
tion Semantics. To prove the equivalence of a structural
operational semantics (defined by the transition relation−→)
and a reduction semantics (defined by the reduction relation
7−→) for the same language, prove the following two propo-
sitions.

1. If t1 −→ t2, then t1 7−→ t2.
Lemma: If t1 −→ t2, then E[t1] 7−→ E[t2].

2. If t1 7−→ t2, then t1 −→ t2.
Lemma: If t1 −→ t2, then E[t1] −→ E[t2].

Equating Reduction Semantics and Abstract Machine
Semantics. To prove the equivalence of a reduction seman-
tics (defined by the reduction relation 7−→) and an abstract
machine (defined by the state transition relation 7−→abs) of
the same language, first define a translator T to unload ma-
chine states to (runtime) terms. Then prove the following
two propositions.

1. If E0[t0] = E1[t1] and E1[t1] 7−→ E1[t2] where t1 R t2,
then ⟨E0, t0⟩f 7−→∗

abs ⟨E0, t0⟩f .

Lemma: If t = E1[t1] and t1 R t2, then ⟨E, t⟩f 7−→∗
abs

⟨EE1, t1⟩f .
2. If S1 7−→abs S2, then T(S1) 7−→∗ T(S2).

7 Related Work
A variety of operational semantics [7, 9, 10, 13, 19, 21, 23–25]
have been developed for variants of MetaML or its exten-
sions, each with some goal in mind. Taha et al. [23] modelled
a core subset of MetaML and their call-by-value (CBV) envi-
ronmental big-step semantics is the first well-known imple-
mentation semantics for MetaML. Taha et al. [24] presented
a more concise CBV substitutional big-step semantics, which
is less implementation-oriented and more suitable for rea-
soning, but did not establish its equivalence to the existing
implementation semantics. We started from this substitu-
tional big-step semantics and made a firm connection to an
environmental semantics by stepwise refinement. To jus-
tify the optimisation of some MetaML implementation, Taha
et al. [19] presented a call-by-name (CBN) substitutional
reduction semantics, and established its equivalence to a
CBN substitutional big-step semantics. They addressed the
known challenges for establishing the equivalence of the
CBV substitutional big-step and reduction semantics, but
they did not do the equivalence proof. Ge [7] proved their
equivalence on the way to deriving a substitutional abstract
machine, the MK machine. To soundly add effects, delimited
control in particular, to a two-stage language, Kameyama
et al. [9] studied how to translate the staging away. Their
source language λα1v is a two-stage restricted variant of the
multi-stage language λα [22]. They translated the source lan-
guage λα1v (with a CBV substitutional reduction semantics
and without effects) to an unstaged target language, Sys-
tem F, where they used tuples to represent environments in
the future stage. Work on deriving abstract machines from
interpreters [2] and abstracting interpreters [5] may be ap-
plicable to multi-stage programming, but each requires a
correct environment-passing interpreter.

8 Conclusion
“You can eat an elephant one bite at a time.” Through several
intermediate semantics, we systematically refined our ref-
erence semantics for MetaML to an environmental abstract
machine, the MCEK machine, and proved their equivalence.
The MCEK machine shall shed new light on static analysis of
multi-stage programming. Particularly, to design sound and
decidable static analyses for MetaML, we plan to apply Van
Horn and Might’s framework [26] to the MCEK machine.
That “good theory leads to good tools” [18] is our belief.

Acknowledgments
We would like to thank Felipe Bañados Schwerter, Joshua
Dunfield, Ivan Beschastnikh, Jonatan Milewski, Zheng Dong,
Minchen Li, and the anonymous referees for their feedback.

13

Refining Semantics for Multi-stage Programming GPCE’17, October 23–24, 2017, Vancouver, Canada

References
[1] Martín Abadi, Luca Cardelli, Pierre-Louis Curien, and Jean-Jacques

Lévy. 1990. Explicit substitutions. In Proceedings of the 17th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’90). ACM, New York, NY, USA, 31–46. https://doi.org/10.1145/
96709.96712

[2] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
2003. A functional correspondence between evaluators and abstract
machines. In Proceedings of the 5th ACM SIGPLAN International Confer-

ence on Principles and Practice of Declaritive Programming (PPDP ’03).
ACM, New York, NY, USA, 8–19. https://doi.org/10.1145/888251.888254

[3] Pierre-Louis Curien. 1985. Categorical combinatory logic. InAutomata,

Languages and Programming: 12th Colloquium, ICALP ’85, Wilfried
Brauer (Ed.). Lecture Notes in Computer Science, Vol. 194. Springer,
Berlin, Heidelberg, 130–139. https://doi.org/10.1007/BFb0015738

[4] Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In
Proceedings of the 1990 ACM Conference on LISP and Functional Pro-

gramming (LFP ’90). ACM, New York, NY, USA, 151–160. https:
//doi.org/10.1145/91556.91622

[5] David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn.
2017. Abstracting definitional interpreters (functional pearl). Proc.
ACM Program. Lang. 1, ICFP, Article 12 (Aug. 2017), 25 pages. https:
//doi.org/10.1145/3110256

[6] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009.
Semantics Engineering with PLT Redex (1st ed.). The MIT Press.

[7] Rui Ge. 2016. Refining Semantics for Multi-stage Programming. Mas-
ter’s thesis. University of British Columbia. https://doi.org/10.14288/1.
0319338

[8] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial

Evaluation and Automatic Program Generation. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

[9] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2008.
Closing the stage: from staged code to typed closures. In Proceed-

ings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-based Program Manipulation (PEPM ’08). ACM, New York,
NY, USA, 147–157. https://doi.org/10.1145/1328408.1328430

[10] Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2009.
Shifting the stage: staging with delimited control. In Proceedings of

the 2009 ACM SIGPLAN Workshop on Partial Evaluation and Program

Manipulation (PEPM ’09). ACM, New York, NY, USA, 111–120. https:
//doi.org/10.1145/1480945.1480962

[11] Peter J. Landin. 1964. The mechanical evaluation of expressions. Com-

put. J. 6, 4 (1964), 308–320.
[12] Peter J. Landin. 1966. The next 700 programming languages. Commun.

ACM 9, 3 (1966), 157–166.
[13] Eugenio Moggi, Walid Taha, Zine El-Abidine Benaissa, and Tim Sheard.

1999. An idealized MetaML: simpler, and more expressive. In Pro-

gramming Languages and Systems: 8th European Symposium on Pro-

gramming, ESOP ’99, S. Doaitse Swierstra (Ed.). Lecture Notes in
Computer Science, Vol. 1576. Springer, Berlin, Heidelberg, 193–207.
https://doi.org/10.1007/3-540-49099-X_13

[14] Damien Pous and Davide Sangiorgi. 2012. Enhancements of the bisim-
ulation proof method. In Advanced Topics in Bisimulation and Coin-

duction, Davide Sangiorgi and Jan Rutten (Eds.). Cambridge Tracts in

Theoretical Computer Science, Vol. 52. Cambridge University Press,
New York, NY, USA, Chapter 6, 233–289.

[15] Kristoffer Høgsbro Rose. 1996. Explicit Substitution: Tutorial & Survey.
Technical Report. BRICS, Department of Computer Science, University
of Aarhus.

[16] Davide Sangiorgi. 2011. Introduction to Bisimulation and Coinduction.
Cambridge University Press, New York, NY, USA.

[17] Tim Sheard. 1999. Using MetaML: A staged programming language. In
Advanced Functional Programming: Third International School, AFP’98,
S. Doaitse Swierstra, José N. Oliveira, and Pedro R. Henriques (Eds.).
Lecture Notes in Computer Science, Vol. 1608. Springer, Berlin, Hei-
delberg, 207–239. https://doi.org/10.1007/10704973_5

[18] Tim Sheard. 2001. Accomplishments and research challenges in
meta-programming. In Semantics, Applications, and Implementation

of Program Generation: Second International Workshop, SAIG 2001

Proceedings, Walid Taha (Ed.). Lecture Notes in Computer Science,
Vol. 2196. Springer, Berlin, Heidelberg, 2–44. https://doi.org/10.1007/
3-540-44806-3_2

[19] Walid Taha. 1999. A sound reduction semantics for untyped CBN
multi-stage computation. Or, the theory of MetaML is non-trival. In
Proceedings of the 2000 ACM SIGPLAN Workshop on Partial Evaluation

and Semantics-based Program Manipulation (PEPM ’00). ACM, New
York, NY, USA, 34–43. https://doi.org/10.1145/328690.328697

[20] Walid Taha. 2004. A gentle introduction to multi-stage programming.
In Domain-Specific Program Generation: International Seminar, Chris-
tian Lengauer, Don Batory, Charles Consel, and Martin Odersky (Eds.).
Lecture Notes in Computer Science, Vol. 3016. Springer, Berlin, Hei-
delberg, 30–50. https://doi.org/10.1007/978-3-540-25935-0_3

[21] Walid Taha, Zine-El-Abidine Benaissa, and Tim Sheard. 1998. Multi-
stage programming: axiomatization and type safety. In Automata,

Languages and Programming: 25th International Colloquium, ICALP’98

Proceedings, Kim G. Larsen, Sven Skyum, and Glynn Winskel (Eds.).
Lecture Notes in Computer Science, Vol. 1443. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 918–929. https://doi.org/10.1007/BFb0055113

[22] Walid Taha and Michael Florentin Nielsen. 2003. Environment classi-
fiers. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL ’03). ACM, New York, NY,
USA, 26–37. https://doi.org/10.1145/604131.604134

[23] Walid Taha and Tim Sheard. 1997. Multi-stage programming with
explicit annotations. In Proceedings of the 1997 ACM SIGPLAN Sympo-

sium on Partial Evaluation and Semantics-based Program Manipulation

(PEPM ’97). ACM, New York, NY, USA, 203–217. https://doi.org/10.
1145/258993.259019

[24] Walid Taha and Tim Sheard. 2000. MetaML and multi-stage pro-
gramming with explicit annotations. Theoretical Computer Science

248, 1 (2000), 211–242. https://doi.org/10.1016/S0304-3975(00)00053-0
PEPM’97.

[25] Walid Mohamed Taha. 1999. Multistage Programming: Its Theory and

Applications. Ph.D. Dissertation. Oregon Graduate Institute of Science
and Technology. https://www.cs.rice.edu/~taha/publications/thesis/
thesis.pdf

[26] David Van Horn and Matthew Might. 2012. Systematic abstraction of
abstract machines. Journal of Functional Programming 22, 4-5 (2012),
705–746. https://doi.org/10.1017/S0956796812000238

14

https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/888251.888254
https://doi.org/10.1007/BFb0015738
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/3110256
https://doi.org/10.1145/3110256
https://doi.org/10.14288/1.0319338
https://doi.org/10.14288/1.0319338
https://doi.org/10.1145/1328408.1328430
https://doi.org/10.1145/1480945.1480962
https://doi.org/10.1145/1480945.1480962
https://doi.org/10.1007/3-540-49099-X_13
https://doi.org/10.1007/10704973_5
https://doi.org/10.1007/3-540-44806-3_2
https://doi.org/10.1007/3-540-44806-3_2
https://doi.org/10.1145/328690.328697
https://doi.org/10.1007/978-3-540-25935-0_3
https://doi.org/10.1007/BFb0055113
https://doi.org/10.1145/604131.604134
https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://www.cs.rice.edu/~taha/publications/thesis/thesis.pdf
https://www.cs.rice.edu/~taha/publications/thesis/thesis.pdf
https://doi.org/10.1017/S0956796812000238

	Abstract
	1 Introduction
	2 Formal Semantics of MetaML
	2.1 Syntax
	2.2 Substitutional Structural Operational Semantics

	3 Explicit MetaML
	3.1 Syntax
	3.2 Structural Operational Semantics

	4 Suspended MetaML
	4.1 Syntax
	4.2 Structural Operational Semantics

	5 Environmental MetaML
	5.1 Syntax
	5.2 Structural Operational Semantics
	5.3 Reduction Semantics
	5.4 Abstract Machine Semantics (MCEK Machine)

	6 Correctness
	6.1 Fresh Variables
	6.2 Well-boundness
	6.3 Proof Strategies

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

