
Developer-Specific Awareness of External Changes

Reid Holmes
Department of Computer Science & Engineering

University of Washington
Seattle, WA, USA

rtholmes@cs.washington.edu

Robert J. Walker
Department of Computer Science

University of Calgary
Calgary, AB, Canada
walker@ucalgary.ca

Abstract
It is often assumed that developers’ view of their system and
its environment is always consistent with everyone else’s. In
certain situations that arise in practice, this assumption is
false, and current development practice does not adequately
address the resulting shortcomings. This paper examines
when the assumption does not hold, and the implications
for developers. A method for helping developers understand
and cope with these situations is described and an evalua-
tion of this method is proposed.

1. Introduction
A base assumption of many development approaches is that
every member of an organization (or group of organiza-
tions) always has a consistent view of their system, modulo
any changes each developer is currently work on. Because
of this model it is assumed that any change a developer
makes to their source code will be immediately detectable
by everyone else. Unfortunately, this assumption does not
always hold in practice.

For example, one approach to support the extension of
systems is through a plug-in infrastructure. The plug-in au-
thor must cede some control over the external environment
in which the plug-in can be installed: while the developer
may have created the plug-in for version n of a framework,
a user may try to install the plug-in in version n + k. If
the developer is not aware of the changes between the two
framework versions that will affect their plug-in, the plug-in
may fail and it could take a long time before the developer
hears of the problem. Although the plug-in author may not
be a member of the team that maintains the framework, their
plug-in can still be affected by the actions of an external
framework developer.

The main problem in these situations is that some exter-
nal change may occur that could break the developer’s code,
but the developer will not immediately be aware of it. The
time delay between the change being made and the prob-
lem being detected exacerbates the effects of the problem,

as users’ opinions of the quality of the product or the time
available for repairing the issues can be severely reduced.
Furthermore, this delay also impedes the developer’s ability
to inform the author of the initial change of the detrimen-
tal impact of the change, and to have them respond with a
reasonable compromise. It has been shown that facilitating
communication between the right people can decrease the
time required to resolve technical problems [1].

One way to avoid such situations is for the developer to
monitor all the changes happening to the depended-upon
environment and to act upon them immediately. Ultimately,
keeping track of all the relevant changes to the depended-
upon environment, while being focused on extending and
repairing the functionality of the developer’s own product,
is an onerous task that is easy to perform poorly. The ma-
jority of these changes simply are not relevant to the devel-
oper’s own code, and the few changes that are relevant can
easily be lost in the noise.

To overcome the burden of managing a high volume of
mostly-irrelevant changes, and the effort required to mon-
itor changes across many different projects, we outline
the YooHoo system. YooHoo analyzes each change to a
depended-upon project for its potential impact on the de-
veloper’s code. YooHoo thus creates custom change logs
that automatically identify changes relevant to a specific de-
veloper and allows them to filter these changes in terms of
importance to their system.

Section 2 describes two problematic scenarios where
developer-specific awareness could be beneficial. Related
work is provided in Section 3. Our approach is described
in Section 4, while our proposed evaluation is considered in
Section 5.

2. Problematic Scenarios

We illustrate two instances in which keeping appraised of
relevant source code changes is onerous and error-prone.



2.1. Large development teams

Large development teams are often split into many sub-
teams, each of which works on an isolated branch of the
main source code repository. Integration engineers inte-
grate these branches with the head of the repository at reg-
ular intervals and reverse-integrate the head back down into
each of the sub-team branches. For some large teams, their
branch may be integrated with the head of the repository
only twice a month; in these situations, it could take as long
as a month for a change from one team to be distributed to
every other developer on all the sub-teams (two weeks up
and two weeks back down into all other branches).

Consider the situation of Zoe, a developer on the sub-
team that maintains the core component of a large applica-
tion. Zoe needs to make a change to the calculate(..)

method’s pre-conditions in the core component; she
searches the repository and finding no conflicts, makes the
change. One month later Lorenzo, a developer on the UI
component sub-team, finds that his code has broken. Al-
though he did not change anything, the integration engi-
neers reverse-integrated Zoe’s changes into his develop-
ment branch overnight, and his CalculateAction class
breaks; Zoe did not find Lorenzo’s dependency because his
code had not yet been integrated into her repository. Now,
Lorenzo must diagnose the problem, file a bug with the
core team, and fix Zoe’s code temporarily, until the official
changes are distributed through another integration cycle.

The time lag in this scenario makes it difficult to assess
the original failure and increases the likelihood that another
developer may take a dependency on the official but incor-
rect version of the calculate(..) method, rather than the
version that Zoe will create in response to Lorenzo’s bug
report. While this bug may have been avoided if Lorenzo
had noticed Zoe’s change to calculate(..) when it hap-
pened, keeping abreast of changes on a single sub-team
is difficult enough, without considering other development
branches.

2.2. Plug-in infrastructures

Consider the situation of Stefania, an Eclipse plug-in de-
veloper. Her plug-in uses functionality from five differ-
ent Eclipse plug-ins, two Apache projects, and one system
she found on SourceForge. When Laura installed Stefania’s
plug-in into her environment it failed to behave as she ex-
pected. After several frustrating rounds of emails, Stefania
realizes that Laura has new versions of three of the eight
external dependencies her plug-in uses. Keeping up on the
changes of these eight projects is overwhelming so Stefania
never realized her code was affected by any of the changes
these projects had made; after debugging her plug-in with
the new versions of the dependencies she is able to resolve
Laura’s problem.

In this scenario, Laura has changed the external environ-
ment for Stefania’s plug-in in a way that the plug-in was not
designed to accommodate. While Stefania ideally would
have kept current of the changes within Eclipse, the Apache
projects, and the SourceForge project, the sheer volume of
changes overwhelmed her ability to track them.

3. Related Work
Gross and Prinz [8] describe the need to present awareness
information in the context of the user’s current work activ-
ities, but do not go beyond a general model; our focus on
the specific problem of maintaining awareness of environ-
mental changes allows for a solution that can eliminate de-
tails that are irrelevant to an individual developer. Cataldo
et al. [1] demonstrate that developers complete tasks more
quickly when they are able to coordinate with the right peo-
ple; our approach is complimentary to theirs, focusing on
inferring relationships between developers from the source
code, rather than explicitly-provided links extracted from
issue tracking systems.

The need for coordination support in software develop-
ment has long been recognized (e.g., see [9]). Much of this
research has focused around software configuration man-
agement (SCM) systems as the key interaction point [7].
Various work has considered the problem of conflicting ed-
its within team development situations (such as that of Perry
et al. [11], de Souza et al. [4], and Sarma et al. [12]); our
problem is significantly different due to its lack of a single,
consistent repository to analyze.

De Souza et al. [3] identified problems in crossing the
boundary from project-private information to project-public
information, that lead to rough transitions even within
teams, despite the application of tools that support it. Co-
ordination and change awareness have moved beyond the
artifacts contained within SCM systems, by also drawing
upon the process-related metadata contained therein [5, 2];
we continue this trend in our approach.

Ideally, we would analyze the precise semantic effects of
the changes made in external projects; unfortunately, this is
not possible in the general case due to formal undecidabil-
ity [10]. Otherwise, we might detect changes in external
application programming interfaces (APIs), and automati-
cally update the developer’s client code (Xing and Strou-
lia [13] provide a recent attempt at this); however, in some
cases the developer may judge that accommodating such
API changes is not in the best interests of the project. This
kind of decision cannot be made automatically.

4. Developer specific awareness
In both of our scenarios, environmental changes, beyond the
control of the developer, introduced errors into their system.
If the developer kept appraised of these external changes



Project Total Daily avg.

FreeBSD 37,843 103
KDE 128,755 352
Linux kernel 39,155 107
MySQL 19,366 53
NetBeans 88,293 241
Open Office 126,272 345

Table 1. Message traffic on the commit mail-
ing lists for several prominent software sys-
tems between June 1, 2007 and May 31, 2008.

they could have adapted their code to work with the modi-
fied environment; however, keeping appraised can be very
expensive. Table 1 demonstrates the volume of check-in
messages for a 1-year period for several projects. Clearly,
reading each message and analyzing its potential impact on
their code would be an enormous chore.

4.1. The YooHoo approach
To combat the volume and quality of check-in notifications
we present the YooHoo developer-specific awareness sys-
tem. YooHoo runs as a client/server system; the server
operates as a daemon along with a source control system
(such as CVS or Subversion) and analyzes changes as they
happen; the client is integrated into the developer’s IDE.
YooHoo has three main facets that help to ensure developers
are notified about only those code changes that are relevant
to them.

Code ownership analysis. One of the main drawbacks of
change notification schemes is that each developer receives
the same notifications, regardless of which parts of the sys-
tem they may be interested in. To combat this, YooHoo first
analyzes the developer’s activity within their source code
repositories and through historical ownership analysis de-
termines which source code files they have changed in the
past. These files represent resources that could be affected
by an external change.

Structural relevance. Once the developer’s set of re-
sources has been identified, YooHoo then determines which
external dependencies those resources have. By statically
analyzing the source code, YooHoo can identify all the
fields referenced, methods called, and subclass relation-
ships made by the resources in which the developer is in-
terested. This set provides YooHoo with a list of external
resources that the developer may want to watch. Changes
made to resources that are not in this set are filtered by
YooHoo to allow the developer to focus their limited time
on only a subset of changes.

Change impact analysis. All changes are not equiva-
lent in their potential to impact a developer. Modifying
a comment is of significantly less interest than changing
the method signature of a method upon which the devel-
oper’s code depends. YooHoo analyzes each change using
the Change Distiller system [6] to gain insight into the na-
ture of each change. By analyzing the abstract syntax tree
(AST) associated with the change, Change Distiller clas-
sifies the changes into 35 different categories. YooHoo
considers each of these categories (and some custom cat-
egories not provided by the Change Distiller analysis) and
compares them to how the developer’s code uses the struc-
tural element that changed. Using this information, YooHoo
is able to categorize a change into HIGH, MEDIUM, or
INFO priorities for the developer. HIGH priority changes
will definitely break the developer’s code; MEDIUM prior-
ity changes are ones that the analysis can neither rule out as
irrelevant nor determine to be definitely impactful. INFO
priority changes involve the developer’s code but without an
obvious impact.

YooHoo has been designed to improve the key shortcom-
ings of general change notification systems by providing the
following two benefits. (1) YooHoo only provides devel-
opers with notifications about changes that are relevant to
them. Every change notification that the developer receives
will be provided because the change happened to a resource
that their code is dependent upon in some way. Through
this filtering mechanism, we expect YooHoo to eliminate
the vast majority of change notifications. (2) YooHoo cate-
gorizes changes by their potential to impact the specific de-
veloper. This categorization enables them to further reduce
the message traffic that they must consider by enabling them
to select only HIGH priority changes, if they so choose.

YooHoo should enable developers to keep appraised of
all the relevant changes happening on multiple branches of
a source code repository, or to follow the development of
a large framework, without being overwhelmed by irrele-
vant changes. YooHoo also enables the rationale for the
change’s relevance to be viewed by the developer; e.g., in
the first scenario, YooHoo could state to Lorenzo that “Zoe
changed the calculate(...) method signature: this will
cause an error in your CalculateAction class.” In the
first scenario, Lorenzo’s YooHoo notification stream would
alert him to any HIGH priority changes made to code that
he depends upon across any development branch in the
repository. In this way he could contact Zoe immediately
about how he would be impacted, or to immediately respond
by modifying his CalculateAction class. For the sec-
ond scenario, using YooHoo Stefania could monitor all the
changes in her dependent projects without becoming over-
whelmed; rather than having to sift through thousands of
changes, YooHoo would promote at most tens of changes



for her to react to. In both of these situations the developer
is able to act proactively to changes in external resources,
rather than reacting to breakage when it happens.

5. Proposed evaluation
To evaluate our solution, we intend to address three research
questions: (1) “Does YooHoo reduce the volume of notifi-
cations to a level that is manageable?”; (2) “Are the noti-
fications that YooHoo presents as HIGH priority, actually
impactful on the developer’s code?”; and (3) “Are the no-
tifications that YooHoo filters out really not impactful on
the developer’s code?” Paraphrasing, Question 2 asks about
false positives, and Question 3 asks about false negatives.

We propose to analyze historical changes over a period
of one year for multiple developers from several different
projects that continue to be developed or maintained. For
this time frame we will generate the list of YooHoo noti-
fications for that developer and compare this count against
the total number of changes they may have had to consider
otherwise. This will give us a sense of the amount of reduc-
tion that YooHoo is able to provide developers, addressing
Question 1.

In addition, given every HIGH priority change, we will
analyze the developer’s subsequent changes to see if they
responded to the change in some way or if a bug remains
unrepaired, thus addressing Question 2. Because of the po-
tential time lag between the change happening and the de-
veloper’s reaction, the start of the one year period used to
analyze the relevance of changes will need to be at least two
years before the present.

Unfortunately, identifying false negatives (Question 3)
for this type of system is more problematic. Firstly, for-
mal undecidability is a fundamental limitation to our ability
to detect relevant, impactful changes, and likewise would
hamper any post hoc analysis of the fidelity of the results.
Secondly, going through the code—even with the help of
the developer who worked on it—to identify every change
that was made in response to an external change would be
very expensive. However, we intend to randomly sample
a very small subset of the filtered-out changes, to deter-
mine whether the developer reacted to them, for example,
by adding a dependence on newly added APIs. If the rate
of false negatives were much greater than zero, a problem
would exist.

6. Conclusion
Developers do not always control when their external de-
pendencies change. Typically, their response to these
changes is reactive and late: a bug report is filed and they
must scramble to resolve the problem. While responding to
changes in this manner is inefficient and increases the dif-
ficult in fixing bugs, developers take this route because of

the amount of work required to keep appraised of relevant
changes. In this paper we outline the YooHoo system that
provides developer-specific notification streams, enabling a
developer to only keep track of those changes that are rele-
vant to them. We have proposed an evaluation of YooHoo
and are specifically interested in feedback on the suitability
of this evaluation for our approach.

References
[1] M. Cataldo, P. Wagstrom, J. D. Herbsleb, and K. M. Carley.

Identification of coordination requirements: Implications for
the design of collaboration and awareness tools. In Proc.
ACM Conf. Comp.-Supported Coop. Work, pages 353–362,
2006.

[2] L.-T. Cheng, S. Hupfer, S. Ross, and J. Patterson. Jazzing
up eclipse with collaborative tools. In Proc. Eclipse Technol.
eXchange, pages 45–49, 2003.

[3] C. R. B. de Souza, D. Redmiles, and P. Dourish. ”breaking
the code”: Moving between private and public work in col-
laborative software development. In Proc. ACM SIGROUP
Int’l Conf. Support. Group Work, pages 105–114, 2003.

[4] C. R. B. de Souza, D. Redmiles, G. Mark, J. Penix, and
M. Sierhuis. Management of interdependencies in collab-
orative software development. In Proc. Int’l Symp. Empir.
Softw. Eng., pages 294–303, 2003.

[5] D. Draheim and L. Pekacki. Process-centric analytical pro-
cessing of version control data. In Proc. Int’l Wkshp. Prin-
cip. Softw. Evol., pages 131–136, 2003.

[6] B. Fluri, M. Wuersch, M. Pinzger, and H. Gall. Change
distilling: Tree differencing for fine-grained source code
change extraction. IEEE Trans. Softw. Eng., 33(11):725–
743, 2007.

[7] R. E. Grinter. Supporting articulation work using soft-
ware configuration management systems. Comp. Supported
Coop. Work, 5(4):447–465, 1996.

[8] T. Gross and W. Prinz. Awareness in context: A light-weight
approach. In Proc. Europ. Conf. Comp. Supported Coop.
Work, pages 295–314, 2003.

[9] R. E. Kraut and L. A. Streeter. Coordination in software
development. Commun. ACM, 38(3):69–81, 1995.

[10] M. Moriconi and T. C. Winkler. Approximate reasoning
about the semantic effects of program changes. IEEE Trans.
Softw. Eng., 16(9):980–992, 1990.

[11] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes
in large-scale software development: An observational case
study. ACM Trans. Softw. Eng. Method., 10(3):308–337,
2001.

[12] A. Sarma, G. Bortis, and A. van der Hoek. Towards support-
ing awareness of indirect conflicts across software configu-
ration management workspaces. In Proc. IEEE/ACM Int’l
Conf. Autom. Softw. Eng., pages 94–103, 2007.

[13] Z. Xing and E. Stroulia. API-evolution support with Diff-
CatchUp. IEEE Trans. Softw. Eng., 33(12):818–836, 2007.


	. Introduction
	. Problematic Scenarios
	. Large development teams
	. Plug-in infrastructures

	. Related Work
	. Developer specific awareness
	. The YooHoo approach

	. Proposed evaluation
	. Conclusion

