
Tools for light-weight knowledge sharing in open-source software development

Davor Čubranić, Reid Holmes, Annie T.T. Ying, and Gail. C. Murphy

Department of Computer Science
University of British Columbia

201-2366 Main Mall, Vancouver BC
Canada V6T 1Z4

E-mail:
�
cubranic, rtholmes, aying, murphy � @cs.ubc.ca

1. Introduction

Open-source projects are almost by definition developed
by virtual teams: “groups of people with a common pur-
pose who carry out interdependent tasks across locations
and time, using technology to communicate much more
than they use face-to-face meetings” ([4], p346).

In such settings, communication and diffusion of infor-
mation becomes more difficult [10]. As a result, main-
taining awareness and coordination of team’s activities be-
comes a challenge [7] and sharing the expertise with one’s
colleagues requires more time and effort.

In this paper we present our ongoing work on using exist-
ing open-source processes to provide developers with ways
to learn and benefit from the past experiences of others
working on the same project. Our aim is to enable light-
weight knowledge sharing: without requiring additional
system infrastructure or additional work to create those
knowledge repositories or disseminate the experiences.

2. Knowledge Portals

One of the solutions being proposed for the problem of
sharing knowledge in distributed organizations are knowl-
edge portals [11]. Knowledge portals are single-point-
access software systems intended to provide easy and timely
access to information and to support communities of knowl-
edge workers who share common goals. The vision for
knowledge portals is for them to support knowledge work-
ers in their “gathering of information relevant to a task,
organiz[ing] it, search[ing] it, and analyz[ing] it, sythe-
siz[ing] solutions with respect to specific task goals, and
then shar[ing] and distribut[ing] what has been learned to
other knowledge workers” ([11], p. 926).

Open-source software projects, of course, already use a
variety of computer-mediated communication and coordi-
nation mechanisms: mailing lists and Usenet newsgroups,

CVS source management repositories, and Bugzilla issue-
tracking systems are the most-common examples of such
tools. These tools already are, in effect, repositories of
knowledge about a project, and we could arguably call web
sites unifying access to those tools (for example, Source-
Forge 1) a rudimentary knowledge portals, especially when
coupled with ability to search the archives.

The problem is that such sites still do not offer much sup-
port to developers engaged in the kinds of knowledge tasks
described above, especially in the last step: sharing and dis-
tributing what has been learned to other members of the
team. The developer wanting to use the “portal” has to rely
on, at best, keyword searching to find bits of previously-
collected information that may be of use in her current task.
Furthermore, once this information has been collected—
from questions answered in the past on the newsgroup, for
example—there is little or no support to organize it (or “dis-
till” it, for easier reference in the future [1]).

3. Our Projects

One of the main barriers to providing effective knowl-
edge portals is getting a sufficient amount of useful informa-
tion into the portal to attract a critical mass of users, thereby
further increasing the information available in the portal.

Getting useful information is complicated by the well-
known fact about groupware systems that asking people to
do extra work when it will only benefit others tends to turn
users away [8]. For this reason, we are focusing our re-
search efforts on ways of taking advantage of existing so-
cial and work processes in open-source software to build
repositories of useful project knowledge. In this section we
describe three such ongoing projects, each taking a different
tack at the problem and targeting a different audience.

1www.sourceforge.org

1



3.1. Hipikat

Hipikat [6] is a tool that forms an implicit group mem-
ory from the information stored in a project’s archives, and
that recommends artifacts from the archives that are rele-
vant to a task that the developer is trying to perform. There-
fore, Hipikat’s target user is a new developer who joined
an open-source project and, because of temporal and ge-
ographic separation, does not have the level of mentoring
support from more experienced colleagues that is normally
present in co-located software teams. When using Hipikat,
these newcomers would not have to find their way amongst
the huge amount of archived, electronic information that is
maintained as part of the project, but would instead be rec-
ommended a small, relevant subset on which to focus their
understanding effort.

The artifacts used to build the group memory are drawn
from a number of sources: newsgroup and mailing list
archives, items in the Bugzilla database, CVS repository,
and the project Web site. Hipikat then infers links be-
tween the artifacts that may have been apparent at one time
to members of the development team but that were not
recorded. For instance, Hipikat infers which source revi-
sions correspond to which Bugzilla items, and infers simi-
larity between Bugzilla items. Later, using these links the
tool, in a role similar to that of a mentor, suggests possibly
relevant parts of the group memory given information about
a task a newcomer is trying to perform.

Hipikat exploits the information and artifacts that are
produced in the normal course of a project’s development
activities. Its group memory is built transparently to the de-
velopers and does not require any additional work on their
part.

The Hipikat prototype is a client-server system. Hipikat
is currently instantiated for the Eclipse project,2 but has
been designed to be adapted easily to other open-source
projects that follow the general model of open-source soft-
ware development [5]. Eclipse is an extensible integrated
development environment platform that was originally de-
veloped by IBM, and was subsequently released under an
open-source license. The platform can be extended through
plug-ins. Basic Eclipse distribution includes plug-ins for
Java development and for communication with CVS.

Since Eclipse is self-hosted, we wrote the client as a
plug-in that works within the IDE. This approach permits
the Hipikat client to integrate seamlessly into a full-featured
work environment, and to thus be used in combination with
other software engineering tools plugged into Eclipse. For
example, an Eclipse developer can use both Hipikat and
the Java search feature that comes bundled with the default
Eclipse distribution.

2www.eclipse.org

We are currently evaluating Hipikat on a group of
newcomers to Eclipse development working on enhance-
ments requested for Eclipse in the past. The client is
also available for download at www.cs.ubc.ca/labs/
spl/project/hipikat.

3.2. Code Example Queries

A new approach on which we are currently working is
making recommendations on proper API usage based on es-
tablished practices in the existing code base. This approach
works orthogonally to Hipikat, which currently ignores the
content of source artifacts in the CVS repository in favour
of their metadata—i.e., author, creation time, and the check-
in comment. Identifying which APIs the developer is using
by looking at the code and making suggestions based upon
correlations between the current API use with similar us-
age patterns used by other developers may provide useful
hints for the developer in accomplishing the current task.
This could be extended to looking at every API used in the
current method or class and making searches based on the
intersection of this API usage.

As in Hipikat, we are applying this technique in the con-
text of the Eclipse project. This project is attractive because
it involves two separate communities of developers: that
working on the core Eclipse platform with the core set of
standard plug-ins (e.g., for Java editing and debugging), and
a much larger community of developers working on third-
party Eclipse plug-ins that use the extension points provided
by the Platform and the core plug-ins to integrate into the
IDE. While Hipikat is targeting the first community, third-
party plug-in developers are clearly more interested in good
API usage than in the history of changes in the Eclipse plat-
form code, and it is they for whom we expect code-example
queries to be the most useful.

The information on which recommendations would be
based would be populated with statistics from core Eclipse
plug-ins. Each core plug-in will have all of its API calls
identified and cataloged. These calls will be analyzed for
relationships between one and other. Patterns will be ex-
amined between these calls in the plug-ins indexed in the
database. The relationships discovered from the plug-in us-
age of the API will form the basis of the results for code-
example queries.

Similarly to Hipikat, the client would detect what the
user is trying to do based on the context of their current
work and then make recommendations based on this infor-
mation. This contextual data could be derived from methods
and classes being used by the code the developer is working
on, as well as comments in it. Query responses should con-
sist of a simple list of examples which are each weighted
by the amount of similarity to the current work being per-
formed. A textual description of the method or class being

2



referenced as the example should be provided based on the
comments that exist of that class or method, if they exist.
Further examination of each of these examples should show
the example with the areas used to match the example to
the current context highlighted so the developer can eas-
ily determine whether or not the example actually fits the
current task. Future API calls that the developer may want
to investigate based upon the example code should also be
highlighted so the developer can quickly see calls that may
be relevant to further work on the task. Examples should
be queriable as well, as the current context is, to find more
examples similar to the one being currently examined.

3.3. Source Code Change Patterns Extraction

Another approach currently being implemented is the ex-
traction of source code change patterns from a versioning
repository. Our belief is that information on the parts of
source code that tended to be modified together by devel-
opers in the past is helpful in the implementation a cur-
rent task, and is especially useful in providing an indication
of possible couplings that may not be immediately obvious
from the code itself, but need to be taken into account when
making the change.

Again, this is the kind of knowledge that would be easy
to share in geographically, or even just temporally, collo-
cated teams, when a developer can see which files in the
repository are being updated by his or her co-workers. It
is also the kind of knowledge that will not necessarily be
recorded in the documentation or explicitly shared through
an online knowledge repository as those mentioned in Sec-
tions 4.1 and 4.2, but is relatively easy to automatically ex-
tract from the project history recorded in the source reposi-
tory.

The patterns of source code changes would be given by a
list of rules of the form ”when this part of the source code is
changed in the implementation of a task, those other parts of
the source code are likely to be changed in the same task.”
These rules can be found using association rule mining [2]
or correlation rule mining [3]. The idea of association rule
mining is to find the rules satisfying a predetermined sup-
port and confidence levels, which ensure that a rule covers
a certain number of cases (support) and has a certain pre-
dictive strength (confidence). Correlation rule mining uses
chi-square statistic to measure the significance of the rules
by comparing the observed frequency counts of different
source code changes with the expected frequency counts as-
suming the changes are independent.

Several issues deserve further investigation. First, de-
termining what parts of source code belonging to one se-
mantic change from CVS logs is tricky. Developers can
check in source code for multiple changes together or check
in a single semantic change over multiple commits. Sec-

ond, because the number of association rules discovered
depends on the user-specified support threshold (and con-
fidence threshold), choosing a good support threshold is
tricky. Setting the support threshold too high would elimi-
nate potentially interesting rules; setting the support thresh-
old value too low would kill the efficiency and would likely
return many uninteresting rules, which would cause prob-
lems with the acceptance of the approach by developers.
We are investigating whether alternative mechanisms other
than support and confidence to measure the interestingness
of the rules are more appropriate.

Our tool uses information from the CVS repository and
the Bugzilla database of the Eclipse project, since we al-
ready have this information recorded in our Hipikat artifact
database.

4. Related Work

4.1. Weblogs

Weblogs are frequently updated sites, usually consist-
ing of many relatively short posts of commentary on recent
events or articles elsewhere on the web. The posts are typi-
cally time-stamped and organized in reverse chronology so
that a reader will always see the most recent post first. [13]

While weblogs are not commonly associated with open-
source software engineering, they are certainly a signifi-
cant and influential presence in the open-source community.
Slashdot,3 for example, is an extremely popular technology-
oriented weblog, that is often used to quickly disseminate
news about computing in general and open-source software
in particular—sometimes resulting in a phenomenon known
as slashdotting, where a mention of a new project or site on
Slashdot results in its readers rushing to view the referenced
site, overwhelming its Web server.

More recently, weblogs have started being used in open-
source projects to keep a sort of a diary of developments
in the project for the wider audience of non-core develop-
ers and potential users. This is typically used in very large
projects where there is a significant user community (e.g.,
MozillaZine, a weekly update for the Mozilla project 4) or
where a project that is still in the early stages has generated
a significant interest because of the caliber of its core devel-
opers (e.g., Chandler personal information manager, which
is led by Mitch Kapor, author of Lotus 1-2-3 and founder
of the Electronic Frontier Foundation,5 and includes on its
team Andy Hertzfeld, author of Macintosh’s operating sys-
tem and graphical user interface). When such Weblogs
allow posting of readers’ comments, they often turn into
repositories of design discussions, links to similar projects,

3www.slashdot.org
4www.mozillazine.org
5Kapor’s weblog: blogs.osafoundation.org/mitch/

3



and stories sharing lessons learned from past experiences.
Ultimately, however, weblogs belong to and are driven by
a single author, and if the maintenance of the weblog be-
comes too much of a time burden, and the weblog is not
regularly updated with new postings, its audience will leave
and the weblog will die.

Furthermore, Weblogs are fundamentally focused on
sharing information with audiences in near temporal prox-
imity. The way weblog sites are organized—with older con-
tent being slowly pushed off the page, and little or no fa-
cilities for organizing it and browsing or retrieving it at a
later time—makes them far more suitable to those simply
keeping up to date than to someone looking for informa-
tion needed to execute a specific task. For this reason, we
see weblogs and our work as complementary, and indeed
Hipikat could easily use project weblogs as its information
sources when those exist in a project.

4.2. Wiki

A wiki 6 is a tool for collaborative development of doc-
uments and web pages, although the term is also used to
describe such web sites themselves. A wiki page can be
easily edited by any reader and new content added without
prior review. Since the content can be easily added, refined,
and hyper-linked with related topics in the wiki and links to
external sites, the result is attracting an active community
of users/authors with a stake in further development of the
site as the knowledge of its topic grows.

Wikis have been used in software engineering from the
very beginning: the original Wiki-Wiki Web 7 was created
in 1995 as a companion site to the Portland Pattern Repos-
itory. More recently, wikis have found use in open-source
software development as knowledge- and tip-sharing repos-
itories, often independent of the developer group (e.g., the
Gnome Wiki 8 or the Eclipse Wiki 9), although there are
also projects using them in the design stage. For example,
the Chandler, already mentioned above, is using its Wiki 10

to provide a forum where design issues can be discussed
and organized in a collaborative fashion by both the core
developers and a wider community interested in the project.

At their best, wikis are excellent examples of organiza-
tional memory systems grown organically by an active com-
munity with a stake in the product. Surprisingly, although
the editing is open to all, the resulting product can be of very
high quality (although some technical mechanisms had to
be introduced to guard against occasional vandals defacing

6also called wiki-wiki, meaning “quick” in Hawaiian, and Wiki-Wiki
Web

7c2.com/ci/wiki
8gnomesupport.org/wiki/
9eclipsewiki.swiki.net/1

10wiki.osafoundation.org/bin/view/Main/WikiHome

the site or users persistently trying to impose their contro-
versial point of view on a topic in opposition to the rest of
the community). However, since authoring on wiki is en-
tirely manual (i.e., hand-editing a kind of simplified HTML
form of its pages), maintenance and growth of the site are
the main problem, otherwise—just as with weblogs—the
user (and author) community will leave.

4.3. Code reuse

Similarly to Hipikat, Ye and Fischer’s CodeBroker [16]
uses information retrieval methods to determine software
artifacts to suggest in the context of a developer’s current
task. However, CodeBroker is tailored to helping a devel-
oper on small-scale reuse tasks: The tool monitors a devel-
oper’s use of a text editor watching for the method decla-
rations and the descriptions of those methods in comments,
the tool uses that information as a query to a library to find
potential components that could be reused instead of a new
component being created. In contrast, when used as a reuse
tool, Hipikat works at the granularity of a task, providing
such information as documents describing how a compo-
nent is to be used with other components. The CodeBro-
ker approach also relies on a developer properly formatting
documentation in the component being defined, and on the
presence of properly formatted documentation in the com-
ponents in the reuse library. Hipikat avoids placing any ad-
ditional requirements on the developers, making use of in-
formation that is potentially more informal. In this regard,
Hipikat is more similar to the Remembrance Agent [15],
which used information sources, such as user’s email fold-
ers and text notes, to present documents relevant, or similar,
to the one currently being edited.

CodeBroker’s approach to implicitly determining the
query context from JavaDoc comments and method decla-
rations is similar to our code-example querying. The dif-
ference, however, is in our focus on patterns of API usage,
rather than descriptions of components or their names and
parameter signatures. Additionally, our approach is less re-
liant on component’s documentation and names to find sim-
ilarities and make recommendations, making it more robust
in the environment of open-source software development.

4.4. Example-Based Programming

Several tools exist to match developers with existing
examples of API usage. Henninger’s CodeFinder and
PEEL [9], Michail’s CodeWeb [12], and Neal’s example-
based programming system [14]all tackle the problem of
providing examples to developers in different ways. Neal’s
approach couples a syntax-directed editor to a repository
of example programs. The editor is augmented with an
additional example code pane. The contents of this pane

4



are selected by choosing examples from a list of available
routines. Henninger’s CodeFinder and PEEL are two com-
plimentary tools which facilitate providing examples to de-
velopers. PEEL identifies reusable components in a semi-
automatic fashion, while CodeFinder allows developers to
search for, and display, examples and their representations.
CodeFinder represents examples in a hierarchy, and allows
the developer to construct specific queries or browse the
hierarchy manually to locate relevant artifacts. CodeWeb
compares example systems against software libraries and
displays parts of the examples which are relevant to the li-
brary. This allows developers to quickly identify the major
library components, the components specific to the example
being examined, and the quick location of example code
using the library. Each of these tools provides a different
method of indexing examples and locating them for devel-
opers. Our approach hopes to automate the task of locating
examples by taking advantage of the context of the devel-
opers current work. By reducing the overhead required to
to identify relevant examples, and by providing additional
information about the relevance of different parts of each
example, we hope to better match developers with artifacts
which would otherwise be extremely difficult to locate and
use.

5. Conclusion

In this paper we have presented three ongoing projects
that aim to enable sharing of knowledge and experiences
in open-source projects that is light-weight and does not re-
quire any additional work on the part of project members, as
is usually needed to build knowledge repositories. While we
do not intend our tools to be the perfect oracles or entirely
replace the help given by a developer’s colleagues, we do
expect that they will alleviate the problems with knowledge-
sharing and mentoring introduced by the open-source devel-
opment’s environment.

References

[1] M. S. Ackerman and D. W. McDonald. Collaborative sup-
port for informal information in collective memory systems.
Information Systems Frontiers, 2:333–347, 2000.

[2] R. Agrawal, T. Imielinski, and A. N. Swami. Mining as-
sociation rules between sets of items in large databases. In
P. Buneman and S. Jajodia, editors, Proceedings of the 1993
ACM SIGMOD International Conference on Management of
Data, pages 207–216, Washington, D.C., 26–28 1993.

[3] S. Brin, R. Motwani, and C. Silverstein. Beyond market
baskets: generalizing association rules to correlatio ns. In
Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, pages 265–276, 1997.

[4] C. D. Cramton. The mutual knowledge problem and its con-
sequences for dispersed collaboration. Organizational Sci-
ence, 12:246–371, May–June 2001.

[5] D. Čubranić and K. S. Booth. Coordinating open-source
software development. In Eighth IEEE International Work-
shop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, pages 61–65, Stanford, CA, USA, 16–
18 June 1999. IEEE Computer Society Press.

[6] D. Čubranić and G. C. Murphy. Hipikat: Recommending
pertinent software development artifacts. In Proceedings of
the 25th International Conference on Software Engineering,
2003.

[7] R. E. Grinter, J. D. Herbsleb, and D. E. Perry. The geography
of coordination: dealing with distance in r&d work. In Pro-
ceedings of the International ACM SIGGROUP conference
on Supporting group work”, year = 1999, pages = 306–315,
location = ”Phoenix, AZ”, publisher = ACM Press,.

[8] J. Grudin. Groupware and social dynamics: eight challenges
for developers. Communications of the ACM, 37(1):92–105,
Jan. 1994.

[9] S. Henninger. An evolutionary approach to constructing
effective software reuse repositories. ACM Transactions
on Software Engineering and Methodology, 6(2):111–140,
1997.

[10] S. Kiesler and J. N. Cummings. What we know about
proximity and distance in work groups? In P. Hinds and
S. Kiesler, editors, Distributed Work, pages 57–80. MIT
Press, Cambridge, MA, 2002.

[11] R. Mack, Y. Ravin, and R. J. Byrd. Knowledge portals and
the emerging digital knowledge workspace. IBM Systems
Journal, 40:925–955.

[12] A. Michail. Learning to use a software library through user-
selected examples.

[13] T. Mortensen and J. Walker. Blogging thoughts: Personal
publication as an online research tool. In A. Morrison, edi-
tor, Researching ICTs in Context, pages 249–279. InterMe-
dia Report, Oslo, Norway, 2002.

[14] L. R. Neal. A system for example-based programming. In
Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 63–68. ACM Press, 1989.

[15] B. J. Rhodes and T. Starner. Remembrance agent. In The
Proceedings of The First International Conference on The
Practical Application Of Intelligent Agents and Multi Agent
Technology (PAAM ’96), pages 487–495, 1996.

[16] Y. Ye and G. Fischer. Information delivery in support of
learning reusable software components on demand. In Y. Gil
and D. B. Leake, editors, Proceedings of the 2002 Interna-
tional Conference on Intelligent User Interfaces (IUI-02),
pages 159–166, New York, Jan. 13–16 2002. ACM Press.

5


