
Making Sense of Online Code Snippets
Siddharth Subramanian, Reid Holmes

School of Computer Science
University of Waterloo
Waterloo, ON, Canada

s23subra@uwaterloo.ca, rtholmes@cs.uwaterloo.ca

Abstract—Stack Overflow contains a large number of high-
quality source code snippets. The quality of these snippets
has been verified by users marking them as solving a specific
problem. Stack Overflow treats source code snippets as plain
text and searches surface snippets as they would any other text.
Unfortunately, plain text does not capture the structural qualities
of these snippets; for example, snippets frequently refer to specific
API (e.g., Android), but by treating the snippets as text, linkage
to the Android API is not always apparent. We perform snippet
analysis to extract structural information from short plain-text
snippets that are often found in Stack Overflow. This analysis is
able to identify 253,137 method calls and type references from
21,250 Stack Overflow code snippets. We show how identifying
these structural relationships from snippets could perform better
than lexical search over code blocks in practice.

I. INTRODUCTION

Developers frequently reuse existing libraries and frame-
works while creating new systems [1]. Unfortunately, figuring
how to use many of these complex frameworks is not ob-
vious [2]. This is often due to a lack of documentation or
source code examples that illustrate the correct way to use the
framework’s APIs [3].

For example, while using existing libraries or frameworks,
developers often know what type of object they need, but do
not know the sequence of steps involved in accessing it [4],
[5]. In these situations, developers often look for solutions
on the web. Stack Overflow 1 is one popular web site to
look for such usage examples [6]. It is common to encounter
posts on Stack Overflow that contain source code snippets
that demonstrate a solution to a particular programming task
or the usage of a specific API. Stack Overflow also lets users
annotate the best solution to a question based on whether the
answer helped them with their original problem. This metadata
provides insight into the quality and correctness of the code
included in these answers. Thus, these code snippets represent
high quality source code examples that demonstrate API usage.

Unfortunately Stack Overflow treats source code snippets as
plain text; this causes searches to fail to utilize any structural
information present in the code snippet and thus masks good
API usage examples. For example, it is common for multiple
API methods belonging to different classes to share similar
names. Hence, a search for a particular method on Stack
Overflow often returns results that are not relevant to the
developer’s query. Also, other information, such as type usage
examples can be lost when method calls are chained together

1http://stackoverflow.com

and the types are implicitly used but are never explicitly
named. These facts can make it difficult for a user to identify
relevant results without having a thorough understanding of
the API.

To solve this problem, we perform static analysis on code
snippets to extract structural information from them. Since
snippets are usually only partial programs, we rely on an
external oracle for additional API information to increase
our ability to reason about the partial programs. We identify
various API classes being used in the code and resolve method
invocations and implicit type usage by inferring details from
the snippets and correlating it with our oracle.

We present the results of our analysis on accepted answers
containing source code snippets from Stack Overflow on
questions that were tagged Android. We were able to suc-
cessfully resolve 177,799 type references and 75,338 method
invocations from 21,250 code snippets. On average, our ap-
proach identified eleven Android API elements from each code
snippet.

This paper makes the following contributions:
• An analysis of the raw Stack Overflow source code

snippets (Section III).
• A partial program analysis that uses an easily-satisfiable

oracle to extract a structural model of code snippets in
Stack Overflow source code examples (Section IV).

• A list of Android API types and methods that are most
referenced in Stack Overflow snippets (Section V).

II. MOTIVATION

The Stack Overflow search mechanism treats source code
snippets as plain text; it does not attempt to leverage the
underlying structural information from the snippets. Consider
the following piece of code extracted from a Stack Overflow
answer marked solved:

public View getView(final int position,
View convertView, final ViewGroup parent) {

...
parent.getChildAt(position)

.findViewById(R.id.progressbar_Horizontal)

.setVisibility(View.VISIBLE);
...

}

The Android API contains six methods named
setVisibility. This means that a developer searching for
example for a specific setVisibility method will frequently

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

85

encounter code snippets for versions of setVisibility
declared in types they are not interested in. From the snippet
alone it can be difficult to determine which specific API
elements are being used. Using the class name along with
the method name as a search string is not a viable solution
(e.g., in the snippet above we cannot determine the type
that setVisibility is being invoked on). Type information
from a few method invocations often goes unnoticed due
to the kinds of method chaining seen above (which is not
uncommon in object oriented languages). Searching for the
fully qualified name returns no relevant results since the
textual code does not contain any fully-qualified names.
Similarly, in the above snippet findViewById is also not
unique; there are five methods with this name in the Android
API as well.

Ideally, we would like to be able to search on the text
snippet above and identify all the relevant information about
the API usage present. For the snippet above, we would
like to know that android.view.ViewGroup.getChildAt
method takes an int argument, returns a View ob-
ject. We would also like to know that this View
has a method findViewById which can be resolved to
android.view.View.findViewById(int) and similarly set-
Visibilty can be resolved to android.view.View.set-
Visibility(int).

Being able to resolve this level of detail from source
code snippets increases their utility because it can identify
information that is not present in the text itself. The remainder
of this paper describes how this can be achieved.

III. STACK OVERFLOW SNIPPETS

Online sources play an important role in API documenta-
tion. Sources such as blog posts and Stack Overflow achieve
a high level of API coverage [6]. A study by Parnin et.
al. [7] revealed that 87% of all Android API classes and
77% of all Java API classes had at least one related post on
Stack Overflow. Moreover, 56% of the Android API classes
were covered by code examples in accepted answers. We
analysed the Stack Overflow data dump [8] (repository) to
further investigate these source code snippets. Of all posts,
we observed that 65% of the 2.1 million accepted answers
had code snippets in them.

Among posts tagged Android, 65,095 accepted answers out
of 111,733 had code snippets in them (58%). Considering only
code snippets that had at least 3 lines of code (LOC), we
observed 39,000 source code snippets in the repository with
a mean size of 16.4 LOC and a median of 9 LOC. We set
the lower bound at 3 LOC because manual investigation found
that shorter snippets often lacked surrounding context that was
essential to help really understand an API (in contrast to just
answering a question or providing a short fragment of pseudo-
code). Figure 1 provides a histogram showing the frequency
of each sized code snippet (> 2 LOC).

From the 39,000 code snippets we analysed, we observed
that only 6,766 (17%) were complete files with class and
method declarations. 6,302 (16%) code snippets were just

10 20 30 40 50 60 70 80
Lines of code

0

2000

4000

6000

8000

10000

12000

14000

N
o.

of
co

de
sn

ip
pe

ts

Fig. 1: Distribution of code in posts tagged Android (> 2 LOC)

method bodies devoid of class declarations. The remaining
66% contained standalone source code statements. As these
standalone statements were so prevalent we tailored our ap-
proach to be able to handle these cases. In our approach, we
identify API examples from code snippets while treating all
of these cases with equal importance.

IV. APPROACH

Source code snippets are by their nature incomplete. Most
answers extend on details provided in the question; because of
this, certain aspects of the snippet, like variable declarations,
are often skipped. These snippets are also often supplemented
code with explanations, providing a more complete answer
than the snippet alone. These explanations are often provided
inline, that is, large snippets of code are broken into smaller
ones spread across several code blocks. This also complicates
analysing the snippets as it is not possible to gauge if the
snippets belong together or not. In our approach, we treat each
code block as a separate code snippet.

The core of our approach is a snippet analysis framework,
much like the partial program analysis framework PPA, that
was built by Dagenais et. al. [9]. While PPA parsed individual
complete files, our approach instead works on arbitrarily small
code fragments. Unlike PPA, which works on individual files
alone, we supplement our framework with a simple oracle
that describes the API space likely to be found in the code
fragments under analysis.

For example, in this paper we are exploring ‘solved’ Stack
Overflow questions that have been given the Android tag. For
these questions, we provide our framework with an oracle
consisting of the Android API (this is generated by a simple
program that examines the android.jar file that ships with
the Android SDK). The oracle contains all of the types and
methods present within the library under analysis.

A. Parsing Snippets

Our approach constructs an Abstract Syntax Tree (AST)
for each code snippet. To ensure quality, we only considered

86

snippets that were greater than 2 LOC and were from answers
marked as solutions by the developer who asked the question.
Since the Android framework is based on Java, the snippets
we encounter are pieces of Java code. While some of these
snippets are compilable code fragments with complete class
and method body declarations, the majority are not; while
some contain method bodies, the majority consist of a free-
standing code statements. To generate the AST, we use Eclipse
Java Development Tools (JDT)2 which provides a Document
Object Model (DOM) representation of the AST; the Eclipse
parser takes a ‘best effort’ approach to parsing code. We used
a standalone implementation of the parser, enabling us to
programmatically invoke the JDT parser and parse arbitrarily
source code snippets. As the JDT can only parse code which
contains class and method declarations, we wrap free standing
snippets accordingly before parsing them.

Since the code is usually not complete, information present
in the code is often not sufficient to resolve API method
accesses.

B. Inferring API Usage

To deal with incomplete information from the parsing step
we employ a simple set of heuristics. Our approach works as
follows:

1) We traverse the AST, collecting type information at
variable declaration and field declaration nodes. We then
query the oracle to retrieve a list of fully qualified classes
that each variable can possibly belong to and annotate
the variable with its set of type possibilities. We also
keep track of type information for parameters used in
method declarations.

2) We then use the variable type information to resolve
method calls. When a method invocation is encoun-
tered, we retrieve the list of candidate types from the
corresponding object reference. We query the oracle to
identify which of these types declare methods with the
same signature as the one being invoked. We annotate
each method invocation in the AST with its set of
candidate fully qualified methods. A list of fully quali-
fied candidate return types is also maintained to resolve
chained method invocations. We use similar techniques
to identify API elements from anonymous class decla-
rations. Finally, we identify overridden methods to infer
information about interfaces and superclasses.

3) If a method invocation node does not have a corre-
sponding object reference, we query the oracle for a
list of all possible candidate API elements. Based on
the information collected at every node, we update our
beliefs about the types and methods resolved previously.
This way, we predict type information for objects that
cannot normally be resolved.

For Android-tagged examples in the repository, our in-
ference method is able to identify 253,137 API classes and
methods being used from 21,250 source code snippets which

2http://www.eclipse.org/jdt/

referenced the Android API. This contained 75,338 API
method references and 177,799 API classes that have only
one candidate element; that is, our approach yields an exact
API match for these elements. Figure 2 shows a histogram
depicting the distribution of API elements in code snippets
that could be exactly resolved by our approach.

5 10 15 20
No. of API elements identified by our approach

0

1000

2000

3000

4000

5000

6000

N
o.

of
co

de
sn

ip
pe

ts

Fig. 2: Distribution of API elements in posts tagged Android (> 2 LOC) as identified
by our approach

V. SNIPPET SEARCH DATA

From the API usage information collected using our ap-
proach, we analysed the most commonly used API elements
in code snippets on Stack Overflow. Table I and II list the
most frequently used API types and methods, and the number
of times they are used in code snippets in Android tagged
posts on Stack Overflow.

0 5 10 15 20 25 30
Code snippet number

0

5

10

15

20

25

N
o.

of
A

P
Ie

le
m

en
ts

id
en

tifi
ed

API elements identified using our approach
API elements identified by lexical search

Fig. 3: Distribution of API elements in posts tagged Android (> 2 LOC)

Our approach thus far has discussed only exact matches.
Upon analysing the Android API we noted that the API

87

TABLE I: Most-referenced Android API Types

API Type Count

android.content.Intent 10550
android.view.View 8519
android.widget.TextView 5621
android.app.Activity 5473
android.os.Bundle 4503

TABLE II: Most-referenced Android API Methods

API Method Count

android.view.View.findViewById(int) 1257
android.app.Activity.onCreate(android.os.Bundle) 1177
android.app.Activity.findViewById(int) 1174
android.util.Log.d(java.lang.String, java.lang.String) 1161
android.widget.Toast.show() 1063

consists of 24,545 total method declarations excluding con-
structors. Of these, 6,720 are unique. Of the remaining 17,825,
each method name clashes with on average 33 other methods.
For example, describeContents clashes with declarations
from 158 different types. From our snippet analysis we found
23,239 instances where we mapped a call to a method name
that we could not fully disambiguate. The search engine
provides developers with a form of faceted search that enables
them to investigate the alternative methods with the same
name; this can allow them to more quickly identify the exact
instance of the name that is relevant to them.

As the standard Stack Overflow search treats code snippets
as plain text, we compared our approach to Stack Overflow
results. To do this we randomly selected 30 code snippets
from Stack Overflow and ran our analysis to identify the
exact method names they contained. We then compared them
to the number of different method names a lexical approach
(such as that taken by Stack Overflow itself) would return. In
fairness we opted to count methods that have more than 10
duplicate as one as we think it is unlikely that a developer
would search for such a common name (e.g., writeToParcel
has 172 declarations). The results of this comparison are in
Figure 3. Ultimately, our snippet analysis approach is able

to decrease mis-reported results by 51% compared to lexical
approaches.

VI. CONCLUSION

In this paper we have explored source code snippets given
in response to Stack Overflow questions. Specifically, we have
explored the space of code snippets that utilize the Android
API from accepted solutions. We believe that by focusing
on accepted solutions we are more likely to identify ‘best
practice’ API usage. We have developed an approach that
can parse these short code snippets to effectively identify
API usage. We found that Android-tagged Stack Overflow
snippets contain on average 9 type references and 4 method
calls that could be utilized to improve code search and link
documentation with developer queries.

REFERENCES

[1] L. P. Deutsch, “Software reusability,” T. J. Biggerstaff and A. J. Perlis,
Eds., 1989, ch. Design reuse and frameworks in the Smalltalk-80 system,
pp. 57–71. [Online]. Available: http://doi.acm.org/10.1145/75722.75725

[2] S. McLellan, A. Roesler, J. Tempest, and C. Spinuzzi, “Building more
usable APIs,” IEEE Software, vol. 15, no. 3, pp. 78–86, May/Jun.

[3] J. Singer, “Practices of software maintenance,” in Proceedings of the
International Conference on Software Maintenance, nov 1998, pp. 139
–145.

[4] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman, “Jungloid mining:
helping to navigate the API jungle,” in Proceedings of the conference
on Programming language design and implementation, 2005, pp. 48–61.
[Online]. Available: http://doi.acm.org/10.1145/1065010.1065018

[5] S. Thummalapenta and T. Xie, “Parseweb: a programmer assistant for
reusing open source code on the web,” in Proceedings of the international
conference on Automated software engineering, 2007, pp. 204–213.
[Online]. Available: http://doi.acm.org/10.1145/1321631.1321663

[6] C. Parnin and C. Treude, “Measuring API documentation on the
web,” in Proceedings of the International Workshop on Web 2.0
for Software Engineering, 2011, pp. 25–30. [Online]. Available:
http://doi.acm.org/10.1145/1984701.1984706

[7] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
Stack Overflow,” Georgia Tech, Tech. Rep., 2012.

[8] A. Bacchelli, “Mining challenge 2013: Stack overflow,” in The Working
Conference on Mining Software Repositories, 2013, To Appear. [Online].
Available: http://2013.msrconf.org/challenge.php

[9] B. Dagenais and L. Hendren, “Enabling static analysis for partial
java programs,” in Proceedings of the conference on Object-oriented
programming systems languages and applications, 2008, pp. 313–328.
[Online]. Available: http://doi.acm.org/10.1145/1449764.1449790

88

