
A Newbie’s Guide to Eclipse APIs

Reid Holmes and Robert J. Walker
Laboratory for Software Modification Research

Department of Computer Science
University of Calgary

Calgary, Alberta, Canada
rtholmes,rwalker@cpsc.ucalgary.ca

ABSTRACT
Eclipse has evolved from a fledgling Java IDE into a mature soft-
ware ecosystem. One of the greatest benefits Eclipse provides
developers is flexibility; however, this is not without cost. New
Eclipse developers often find the framework to be large and con-
fusing. Determining which parts of the framework they should be
using can be a difficult task as Eclipse documentation tends to be
either very high-level, focusing on the design of the framework, or
low-level, focusing on specific APIs. We have developed a tool
called PopCon that provides a bridge between high-level design
documentation and low-level API documentation by statically ana-
lyzing a framework and several of its clients and providing a ranked
list of the relative popularity of its APIs. We have applied PopCon
to the Eclipse framework for this challenge to help newbie Eclipse
developers identify some of the most relevant APIs for their tasks.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Training, help, and documentation

General Terms
Documentation

Keywords
API popularity, PopCon, mining software repositories

1. INTRODUCTION
Eclipse has evolved into a very large framework. Europa,

its most recent release, contained over 1,200 individual plug-ins.
Eclipse is a flexible system that provides many great features devel-
opers can leverage to quickly make impactful programs; however,
Eclipse’s flexibility and breadth of functionality makes it difficult
for new developers to understand. To combat this problem Eclipse
provides a large amount of documentation. This tends to be at two
levels: (1) high-level design documentation that outlines the ma-
jor components of the Eclipse system and (2) low-level API docu-
mentation that specifies what each API does. These two types of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSR’08, May 10-11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-024-1/08/05 ...$5.00.

documentation result in a conceptual gap that the developer must
overcome: the high-level documentation suggests particular plug-
ins they should focus on but looking at the API documentation for
that plug-in they find hundreds of types and methods, alphabeti-
cally sorted, with no indication of which they should investigate
first. This problem is particularly evident on the Javadoc package-
overview page as it lists all of the interfaces and classes declared
within the package giving only short (typically less than 10 word)
descriptions of each. Our tool, called PopCon, has been devel-
oped to address this shortcoming: by enumerating the API usage
information in its database, PopCon can provide the developer with
an overview of which APIs are most used for any particular pack-
age, class, or interface. In this way PopCon can provide a more
meaningful ranking of the individual APIs helping a developer fo-
cus their investigation on those API elements that are most often
used without being overwhelmed by the less important elements.
PopCon can also provide the source code for each usage, that the
developer can leverage as an implicit example of how the API can
be used.

The Eclipse framework is particularly well-suited for this type of
analysis as it is comprised of a small kernel of core code that is ex-
tended by many different plug-ins. This means that, by analyzing
how Eclipse developers make use of the framework itself, it is pos-
sible to get a comprehensive understanding of the most important
APIs. With the advent of the Eclipse release train (first Callisto,
then Europa, and now Ganymede) the framework also ships with a
huge amount of extra code (e.g., CDT, WST, TPTP, and RSE) that
PopCon can analyze to further refine its results.

For the Mining Software Repositories 2008 General Challenge,
we have used PopCon to analyze Eclipse Europa to infer the most
used APIs for several major plug-ins. These APIs represent often-
used points that a newbie developer can start from when investi-
gating a new development task where they have only a high-level
understanding of what they want to do. This ordering gives them
insight into the relative importance of an API and relieves them
from either manually searching for examples or investigating each
API one-at-a-time.

PopCon has been designed to help a developer, who is trying to
perform a particular task, gain insight into which parts of a large
framework are the most-often used. As these tasks tend to be spe-
cific, PopCon has not been designed to infer generally ‘surprising’
results; in contrast, it provides specific insights that may help guide
a developer in their current task. The data we have provided for
this challenge should be considered in this way: If I were trying to
figure out how to use this package, class, or interface would this
information be useful to me?

2. POPCON
PopCon is a client-server system: the server contains many

structural facts extracted from software systems and the web-based
client allows the developer to interact with aggregate usage infor-
mation in an online fashion. Besides the basic structural extraction,
PopCon does not pre-compute any of its results enabling additional
systems to be added to the database at anytime. An in-depth dis-
cussion of how PopCon works has been previously reported [2].

2.1 Extracting Structure
PopCon uses the lightweight static analysis engine created for

the Strathcona Example Recommendation System [1]. The struc-
ture crawler extracts information about various program entities
(packages, classes, interfaces, fields and methods) and the inter-
actions between them (contains, inheritance, references, calls, and
overrides). An Eclipse plug-in has been developed that will extract
this structural information, and its associated source code, auto-
matically using the standard Eclipse export functionality. This in-
formation is stored in a compressed file that can be automatically
uploaded to the server. A PopCon server can support a whole team;
there is no need for individual developers to run separate servers
or interact with its administrative component, unless they want to
add new source code. The structure for Eclipse Europa, which con-
tains several million lines of source code, can be extracted and up-
loaded to a PopCon database in approximately 4 hours using one
inexpensive machine; the developer need only be involved in this
process for two five-minute periods (initiating the extraction and
the database population).

2.2 Displaying Results
Generally developers start interacting with PopCon by asking for

a summary for a particular package. At this level PopCon pro-
vides an overview of the most used APIs within that package. This
overview includes graphs representing the most extended or im-
plemented types, most overridden methods, most called methods,
and most referenced fields in the package. An example of one of
these overview graphs is given in Figure 1. In this case the graph
represents the most-called methods in the swt.browser package.
By clicking on any mentioned class or interface the developer is
then taken to an overview page for the selected entity. This page
describes the relative popularity of any of the methods or fields
declared by the entity. By design, PopCon only shows a limited
amount of data to the developer in an effort to avoid adding to the
information overload they already face.

Figure 1: Most-called methods in swt.browser

3. ECLIPSE NEWBIE API GUIDE
For this challenge we chose to focus on providing usage

overviews for several major Eclipse plug-ins. While PopCon by de-
fault shows “Top 10” lists, we have further reduced many of these
to “Top 5” lists to save space. Using the basic Eclipse help func-
tionality developers can easily discover each of these plug-ins and
what high-level functionality they provide. PopCon can then help
the developer identify which low-level APIs they should focus their
investigation on.

3.1 Java Development Tools (JDT)
The non-internal API for JDT consists of 41 packages, 205 in-

terfaces, 631 classes, 8897 methods, and 4668 fields. Scanning
the overview page for the org.eclipse.jdt package, the devel-
oper can quickly focus on some of the most important classes and
interfaces in this package (and its sub-packages). ASTVisitor,
Expression, Statement, ASTNode, and IJavaElement are all
significant JDT classes and PopCon validates this fact (Table 1).

Element Count
ASTVisitor 100
SelectionDispatchAction 74
Expression 26
SearchRequestor 25
IElementChangeListener 24
Statement 22
ASTNode 19
IClassFileAttribute 16
IJavaElement 13
StandardJavaElementContentProvider 13

Table 1: Most-extended/-implemented JDT classes/interfaces.

The most-called methods in the package (Table 2) give a glimpse
into how these types are being used by existing systems. The first
two are of particular importance: when working with ASTNodes,
the accept(ASTVisitor) method is key to working with any of
ASTNode’s child types. IJavaElement.getJavaProject() is
another very useful library method that is often used but can be
easily lost in the other 18 methods defined by this interface.

Element Count
IJavaElement.getJavaProject() 526
ASTNode.accept(ASTVisitor) 513
ASTNode.getStartPosition() 434
IJavaElement.getElementName() 398
IJavaElement.exists() 384

Table 2: Most-called JDT methods.

If the developer wants to see how the ASTVisitor is being
used, he can look at the summary page for the class (Table 3).
This abstract class can be daunting because it contains 171 meth-
ods; PopCon is able to quickly suggest that some methods are
used much more often than others. While a developer may not
be surprised by the importance of visit(TypeDeclaration) or
visit(MethodDeclaration), he may have overlooked the im-
portance of visit(SimpleName)—the use of which greatly sim-
plifies many basic AST analyses.

Element Count
ASTVisitor.visit(SimpleName) 60
ASTVisitor.visit(MethodInvocation) 47
ASTVisitor.visit(TypeDeclaration) 41
ASTVisitor.visit(MethodDeclaration) 36
ASTVisitor.visit(AnonymousClassDeclaration) 32

Table 3: Most-overridden ASTVisitor methods.

3.2 Standard Widget Toolkit (SWT)
The non-internal API for SWT consists of 13 packages, 47 inter-

faces, 401 classes, 5666 methods, and 2533 fields. Looking at the
most-extended/-implemented classes and interfaces (Table 4), the
developer can quickly see that SWT makes extensive use of listen-
ers. From this list the developer can also infer that the basic widget
types are usually used through calling, not through inheritance.

Element Count
SelectionAdapter 1259
Listener 458
ModifyListener 365
SelectionListener 303
DisposeListener 239

Table 4: Most-extended/implemented SWT classes/interfaces.

Interestingly, the most-called methods in SWT (Table 5) do not
relate to the listeners at all but instead pertain to widgets and how
they are laid out. Heavy usage of the GridData class indicates that
GridLayout is the most-used layout system for SWT-based appli-
cations. Furthermore, a widget’s layout can be modified by apply-
ing GridData objects to them via the setLayoutData method.

Element Count
Control.setLayoutData(Object) 2616
GridData.<init>(int) 1851
Composite.setLayout(Layout) 1749
Composite.<init>(Composite,int) 1410
Widget.getDisplay() 1401

Table 5: Most-called SWT methods.

3.3 JFace
The non-internal API for the JFace plug-ins consists of 39 pack-

ages, 279 interfaces, 1035 classes, 10671 methods, and 2901 fields.
The most-inherited elements list provides a cross-section of many
interesting elements in JFace (Table 6). These include the impor-
tance of the Action infrastructure, how threads are managed by
the UI (RunnableWithProgress, SafeRunnable), how JFace
notifies various widgets of state changes (ISelectionChanged-
Listener, IPropertyChangeListener), and how the document
provider infrastructure works (LabelProvider, IStructured-
ContentProvider, ITreeContentProvider).

JFace uses constants heavily to convey specific messages be-
tween its various components; the developer can get a quick
overview of the most-used fields by scanning through the most-
referenced field list (Table 7).

Element Count
Action 912
ISelectionChangedListener 404
IRunnableWithProgress 308
IPropertyChangeListener 289
LabelProvider 269
IStructuredContentProvider 174
ViewerFilter 152
IMenuListener 142
ITreeContentProvider 138
SafeRunnable 121

Table 6: Most-extended/-implemented JFace classes/interfaces.

Element Count
Window.OK 529
IDialogConstants.OK_ID 251
Position.offset 156
StructuredSelection.EMPTY 143
IDialogConstants.CANCEL_LABEL 140

Table 7: Most-referenced JFace fields.

3.4 User Interface (UI)
The non-internal API for the UI plug-ins consists of 67 packages,

353 interfaces, 1435 classes, 12261 methods, and 4530 fields. The
most-called UI methods (Table 8) gives insight into how to get han-
dles to the Eclipse workbench, preferences store, and help system.

Element Count
PlatformUI.getWorkbench() 2181
IWorkbench.getHelpSystem() 1105
AbstractUIPlugin.getPreferenceStore() 790
IWorkbenchHelpSystem.setHelp(Control, String) 636
WorkbenchPart.getSite() 478

Table 8: Most-called UI methods.

By looking at the inheritance overview (Table 9), the developer’s
curiosity in the AbstractUIPlugin class is piqued and he decides
to investigate it further.

Element Count
IWorkbenchPreferencePage 121
AbstractUIPlugin 116
ActionFactory 81
WorkspaceModifyOperation 80
IWorkbenchWindowActionDelegate 69

Table 9: Most-extended/-implemented UI classes/interfaces.

Examining the most-overridden methods for
AbstractUIPlugin (Table 10), the developer can see that
the first three methods (the constructor, start(...) and

stop(...)) are used far more often than the the other 8 methods.

Element Count
AbstractUIPlugin.<init>() 130
AbstractUIPlugin.stop(BundleContext) 102
AbstractUIPlugin.start(BundleContext) 101
AbstractUIPlugin.createImageRegistry() 8
AbstractUIPlugin.initializeImageRegistry(ImageRegistry) 3

Table 10: Most-overridden AbstractUIPlugin methods.

4. DISCUSSION
PopCon can be confounded in two particular cases. First, it can-

not effectively surface important new APIs. This is because older
APIs tend to be more heavily used than newer ones, even if the
newer ones are the correct ones to use. Secondly, PopCon can be
confused by frequently-used, but ultimately unimportant methods
such as Widget.isDisposed() and Widget.dispose().

To an expert’s eye, PopCon’s results may not seem particularly
surprising. But to a novice’s eye, such results could well be the key
to tackling a difficult task. That such a simple approach to min-
ing a software repository can yield powerful results is important:
complex visualizations and analyses were not needed—and likely
not appropriate since the specific tasks to be tackled would not be
known a priori. The results of PopCon could well be used to inform
the process of documenting the system for a newbie.

Nevertheless, PopCon will be extended to allow the filtration of
its results on a temporal basis. Results will be compiled that in-
volve only a particular release or set of releases of an API, for
example, or that have been added to the repository within a par-
ticular timeframe. Such information is currently maintained within
the repository, but PopCon does not leverage it at present.

PopCon can also be used by API owners to get a sense for how
frequently their APIs are being used. They can also navigate to
the source code for each usage to see how other developers are
using their APIs and see if they are using them correctly. This
information can be valuable for the developer as it is often difficult
to manually collect and enumerate this data manually.

5. CONCLUSION
We have applied PopCon to this challenge to help developers

bridge the gap between high-level and low-level documentation by
mining the structural elements in the Eclipse source code. By enu-
merating the usage of various APIs, PopCon is able to give the
developer an indication of the relative importance of various APIs
for a particular plug-in, package, class, or interface. This knowl-
edge can help them prioritize their investigation efforts when they
are working with unfamiliar portions of Eclipse. An overview of
the most popular APIs for various major Eclipse components have
been provided to provide insight into the quality of the information
that PopCon returns.

6. REFERENCES
[1] Reid Holmes, Robert J. Walker, and Gail C. Murphy.

Approximate structural context matching: An approach to
recommend relevant examples. IEEE Transactions on
Software Engineering, 32(12):952–970, 2006.

[2] Reid Holmes and Robert J. Walker. Informing Eclipse API
production and consumption. In Proceedings of the 5th
OOPSLA Workshop on Eclipse Technology eXchange,
pages 70–74, 2007.

