
Scaling an Object-oriented System Execution Visualizer through Sampling

Andrew Chan, Reid Holmes, Gail C. Murphy and Annie T.T. Ying

Department of Computer Science
University of British Columbia

201-2366 Main Mall
Vancouver BC Canada V6T 1Z4

{chana, rtholmes, murphy, aying}@cs.ubc.ca

Abstract

Increasingly, applications are being built by combining
existing software components. For the most part, a soft-
ware developer can treat the components as black-boxes.
However, for some tasks, such as when performance tuning,
a developer must consider how the components are imple-
mented and how they interact. In these cases, a developer
may be able to perform the task more effectively by using
dynamic information about how the system executes. In
previous work, we demonstrated the utility of a tool, called
AVID (Architectural VIsualization of Dynamics), that an-
imates dynamic information in terms of developer-chosen
architectural views. One limitation of this earlier work was
that AVID relied on trace information collected about the
system’s execution; traces for even small parts of a system’s
execution can be enormous, limiting the duration of execu-
tion that can be considered. To enable AVID to scale to
larger, longer-running systems, we have been investigating
the visualization and animation of sampled dynamic infor-
mation. In this paper, we discuss the addition of sampling
support to AVID, and we present two case studies in which
we experimented with animating sampled dynamic informa-
tion to help with performance tuning tasks.

1. Introduction

Increasingly, applications are being built by instantiat-
ing, combining, and extending existing software compo-
nents. This approach to development can provide many
benefits, including reducing the time and effort needed to
develop and deploy complex applications. These develop-
ment benefits are realized when a developer can treat the
components being used as black-boxes, accessing the func-
tionality of the components through programmatic inter-

faces. For most development and evolution tasks, this view
of a component is sufficient. However, for some tasks, such
as when performance tuning, a developer needs to “open
up” the component and consider how the component is im-
plemented.

When a component is opened up, a developer can benefit
from tool support to analyze the source and execution of the
system. In this paper, we focus on the analysis of dynamic
information collected from a system’s execution. Dynamic
information is voluminous. One approach to dealing with
the volume is to present a summary of collected data to the
developer. Profiling tools, such as JProbe Profiler [6], are
examples of this approach. For some tasks, summary in-
formation is sufficient. For example, a developer may be
able to tune the performance by knowing which methods
consumed the most execution time.

At other times, a developer requires more detailed in-
formation about the order of execution events, the fre-
quency of certain patterns of calls, or other similar infor-
mation [8]. In these cases, a developer can use a detailed
visualization tool, such as Jinsight [5], that allows a devel-
oper to track and analyze such information as interactions
between classes and the contents of the heap. A major as-
set of these tools—their support for detailed investigation
of execution—can also be a liability. A developer must typ-
ically have narrowed the problem down to a small piece of
the execution for the tool to handle the volume of informa-
tion, and the developer must typically view the system at a
low-level of detail, such as classes, placing the onus on the
developer to correlate the information to a component view.

To help a developer in cases where a coarser-grained,
component-type view of the execution is useful, we intro-
duced the AVID tool (Architectural VIsualization of Dy-
namics) [12]. AVID supports the off-line visualization of
dynamic information collected from the execution of a Java
system in terms of user-defined architectural views. One
limitation of this earlier work was that AVID relied on es-

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

sentially the same information as the detailed visualization
tools described above. To enable AVID to visualize longer
durations of large system, we have been investigating the
visualization and animation of sampled dynamic informa-
tion.

In this paper, we describe the results of our initial ex-
plorations in visualizing and animating sampled execution
traces. We describe how we have added sampling sup-
port to AVID, and describe two case studies in which we
used AVID with sampling support to investigate perfor-
mance tuning tasks on the Eclipse IDE. This paper demon-
strates that visualizing and animating sampled execution
traces shows sufficient promise to warrant future investiga-
tion, and provides an initial discussion of the tradeoffs of
different sampling options.

We begin by describing the AVID tool (Section 2) and
the support we have added to AVID for sampling. Next, we
describe the case studies in which we applied AVID to two
tasks on Eclipse (Section 3). We then present a discussion
of issues involved with sampling (Section 4), and compare
with related efforts (Section 5) before summarizing the pa-
per (Section 6).

2. AVID

AVID is an off-line visualizer for Java applications. A
developer collects information—a trace—about the calls
between methods and about the instantiation and destruc-
tion of objects in an execution of a Java application of inter-
est. The developer then specifies, through a mapping file, a
view to use to present the dynamic information. The view
consists of a set of entities: Each entity represents a collec-
tion of classes in the application. The developer chooses a
view that is relevant to the task at hand. Given the trace and
the mapping, AVID presents a user-controllable animation
that allows the developer to traverse the trace and to view
the execution in terms of the described entities.

We focus here on features of AVID relevant to this pa-
per; in-depth descriptions and discussions of AVID’s capa-
bilities are available elsewhere [12, 13, 1].1

To make this abstract description of AVID concrete,
we consider an example. A developer working on the
Eclipse open-source IDE [2] is asked to investigate a bug
where the “filesystem is accessed too often”.2 As a first
step, if the developer is not intimately familiar with Eclipse,
the developer could use AVID to investigate interactions
between the framework and the application when the bug
occurs.

1The first version of AVID supported visualizing the execution of
Smalltalk applications [12]. Although the current tool supports visualiz-
ing the execution of Java applications, the basic features are unchanged
from those described in the earlier publication.

2This bug is #10216 in the Eclipse Bugzilla problem reporting system.

To proceed, the developer collects a trace of the ex-
ecution of the system when the problem occurs. The
AVID toolset uses the Jinsight tracer to collect dynamic
information; a Jinsight trace is then postprocessed using
AVID tools into the AVID format [13], which enables fast
abstraction of the information in terms of user-defined enti-
ties. The developer must then define the entities of interest
for investigating this bug. The developer chooses to focus
on major framework and application components, specify-
ing the mapping below.3

JavaProject class org.[...].JavaProject
JDT-CORE class org.eclipse.jdt.core.*
JDT-CORE class org.eclipse.[...].jdt.core.*
JDT-UI class org.eclipse.jdt.ui.*
JDT-UI class org.eclipse.internal.jdt.ui.*
CORE class org.eclipse.core.*
CORE class org.eclipse.pde.*
JDK class java.*

Each entity in the file is a regular expression describing
the names of classes to associate with the entity. For ex-
ample, classes starting with org.eclipse.jdt.ui or
org.eclipse.internal.jdt.ui are to be associ-
ated with the JDT-UI entity.

Given the AVID trace and the mapping file, AVID dis-
plays the window shown in Figure 1. This window shows
the cel mode in which the execution is broken into a se-
quence of cels. Each cel displays both incremental and sum-
mary dynamic information about the dynamic information
collected to that point. The incremental information con-
sists of a hyperarc (in grey) showing the current call stack.
The summary information consists of arcs showing the cu-
mulative number of calls between different entities, and bars
in each entity showing the number of object allocations and
deallocations corresponding to the classes associated with
the entity. For instance, in Figure 1, to this point in the
collected dynamic information, 837 calls have occurred be-
tween objects associated with the JavaProject and the
CORE entities, and 819 objects have been instantiated that
are associated with the CORE entity.

In the cel mode, buttons are active that allow a user to
animate the execution. A user can choose to play the ani-
mation forward, can choose to step, forward or backward,
through the animation, or can move the navigation bar to
any point they desire to see in the animation. The position
of the slider in Figure 1 indicates that the animation is about
three-quarters of the way through the dynamic information.
The reload button allows a developer to change the defini-
tion of entities to use in the view during an AVID session.

When viewing a cel, a developer may wish to view more
detailed information about the calls that have occurred, or

3We are not showing the full mapping syntax, and sometimes elide
([...]) the class names, for lack of space.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Figure 1. AVID with Trace from Unoptimized Filesystem Problem

the objects that are being allocated or deallocated. To deter-
mine this detailed information, a developer may click on a
summary arc, or on an entity, and the appropriate informa-
tion will be loaded into a slice definition in Jinsight.

2.1. Sampling Support

The AVID trace file collected to investigate the
Eclipse bug is over 14.4 MB. This trace represents only a
small part of the execution: adding an external jar file into a
Java project. When the relevant piece of the execution can
be determined and is short, the size of the trace may not be
an issue.

However, when a software developer is trying to isolate a
relevant piece of execution for the task at hand, or when the
system is large, the size of the trace can become an issue.
As an example, a tracer Reiss and Renieries built for Java
produces approximately one gigabyte of data for every ten
seconds of Java execution with JIT enabled [9]. A number
of approaches to reduce the size of the trace are possible
(see Section 5). Given the style of visualization in AVID,
we decided to investigate the use of sampling to reduce the
size of the trace.

We had to decide what to sample. The input consisted of
a discrete stream of events, including method entry, method
exit, object allocation, object deallocation, thread start, and
thread stop events. Since AVID supports animation of the
data, we did not need to limit ourselves to investigating sta-

tistically significant samples. Rather, we wanted to explore
whether sparse samples would retain enough features of the
execution to help a developer reason about a task. To pro-
vide flexibility in this exploration, we chose to support sep-
arate configuration of memory and control-flow event sam-
pling. For memory events, a developer can choose from
three options:

M-1 take every xth memory (object allocation or dealloca-
tion) event,

M-2 take the first memory event that occurs during or after
xth timestamp, or

M-3 do M-1 or M-2, and snapshot the call stack before
each sampled memory event; consecutive snapshots
are compared to determine which methods have been
entered or exited, thereby providing control-flow con-
text for the memory events.

For control-flow events, a developer can choose to:

C-1 take every xth control-flow (method entry or method
exit) event,

C-2 take a snapshot of the call stack every xth event; con-
secutive snapshots are compared to determine which
methods have been entered or exited, or

C-3 C-2, except that the snapshots are taken every xth
timestamps.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

In addition to being able to control the kind of sample
taken, the developer can also choose when sampling occurs,
and can choose to intersperse sampled and traced data in an
AVID session. We discuss issues associated with collecting
sampling information in Section 4.

3. Case Studies

We performed two case studies to investigate if there was
any utility in visualizing and animating sampled execution
traces from an architectural view. Each case study focused
on a previously identified and solved performance tuning
task on Eclipse. Eclipse is a large system, consisting of
over 775,000 lines of Java source code. Using completed
performance tuning tasks for our case studies allowed us to
focus on the sampling capabilities of AVID. For each study,
we describe the performance problem, the features of the
problem that are evident when running AVID over dynamic
trace information, the effect of sampling options on the vi-
sualization and animation of those features, and the results
we synthesize from each study.

3.1. Case Study #1

This case study focused on the bug described in Sec-
tion 2. Specifically, when an Eclipse workspace was located
on a slow(er) network connection, the performance of nav-
igating in the package view and other parts of Eclipse de-
graded. This problem was noted against Eclipse 2.0 (build
20020214).

With AVID, we investigated two versions of Eclipse:
build 20020125 in which the problem existed, and build
20020521 in which the problem was fixed. We refer to the
former as the unoptimized version, and the latter as the op-
timized version.

3.1.1 AVID View

We used the mapping described in Section 2 to investigate
the performance problem in AVID. The JavaProject entity
represented a specific class in Eclipse providing access to
the files comprising a Java project. The JDT-CORE en-
tity represented the classes providing the non-UI parts of
the Java programming environment support. The JDT-UI
entity represented the classes providing the UI parts of the
Java programming environment support. The CORE entity
represented the classes supporting Eclipse plug-ins and the
plug-in registry, and the JDK entity represented the classes
comprising the Java development kit.

From the viewpoint of a developer performing the task,
this map includes seemingly omniscient information. While
a developer might reasonably be expected to posit architec-
tural entities corresponding to major components in Eclipse,

how would the developer know to separate out the JavaPro-
ject class? We separated it out because it was mentioned in
the description of the bug report. Alternatively, a developer
might find, through a coarser AVID view, or through the use
of another tool such as a profiler, that the class was heavily
involved in the functionality of interest.

To investigate the problem, we collected a trace
from each of the optimized and unoptimized versions.
Each trace is representative of the same use of Eclipse:
We focused on the behaviour of the system when a
user adds an external jar (org.eclipse.core.boot/boot.jar)
into a Java project, which contains only two other
external jars (org.eclipse.jdt.core/jdtcore.jar and
org.eclipse.jdt.ui/jdt.jar).

We then used AVID to view each of the traces. We were
interested in how JavaProject interacted with the other enti-
ties. Viewing cels in the trace from the unoptimized version,
we found the following features of the problem:

F-1 20 calls occur from JDT-CORE to JavaProject before
any call from JDT-UI. These calls surprised us because
we had assumed that JavaProject was not used prior
to adding the external jar in our usage scenario: We
believed we had collected a trace from the point when
the behaviour was triggered from the user interface. A
developer assigned the performance tuning task would
likely want to investigate these calls.

F-2 51 calls occur from JDT-CORE to JavaProject after the
call from JDT-UI to JDT-CORE. The developer might
choose to investigate why these additional calls are
needed for a simple external jar addition to a simple
project.

F-3 a second call occurs from JDT-UI to JDT-CORE be-
fore the end of the trace. After this call, there are no
further calls to JavaProject from JDT-CORE.

To verify that these features were of likely interest in the
performance tuning task, we also viewed the trace from the
optimized version with AVID. We found:

• about the same number of calls from JDT-CORE to
JavaProject before any call to JDT-UI.

• fewer calls—23 instead of 51—from JDT-CORE to
JavaProject after a call from JDT-UI to JDT-CORE.

• no second call from JDT-UI to JDT-CORE.

3.1.2 AVID With Sampling

We sampled the unoptimized trace in a number of different
ways and viewed the resulting animations to see if the fea-
tures described above were evident. Since none of the fea-
tures involved memory, we considered the six control-flow
event samplings shown in Table 1.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

3.1.3 Results

Table 1 summarizes the results. The first column describes
the sampling parameters. The second column reports the
total number of bytes required to represent the sampled in-
formation in AVID format. The third column reports the
percentage, based on size, of the sampled information com-
pared to the AVID trace file, which was over 14.4 MB. The
fourth column describes whether the features were evident
when viewing the sampled information with AVID.

The table shows that we were not able to find any evi-
dence of usefulness for C-1 sampling, which involves tak-
ing every xth method entry or method exit event. The dif-
ficulty is that this form of sampling does not retain suffi-
cient context about the individual events. C-2 and C-3 sam-
pling, which involve snapshots of the call stack at every xth
event or timestamp, show more promise because they en-
able tracking of longer-running methods. Neither is able
to fully detect the specific features we identified for the
performance problem because these features were all de-
pendent upon the identification of two calls from JDT-UI,
which were apparently not sampled. However, these kinds
of sampling were able to detect numerous calls from JDT-
CORE to JavaProject, which might lead a developer in the
right direction for solving the problem. These kinds of sam-
pling required significantly less data; the sampled data was
7 to 63% the size of the original trace.

One might argue that simply seeing a “large” number
of calls, without the context of the JDT-UI calls of interest,
could be achieved by using a profiler. This criticism is valid.
If a developer determined that a particular kind of event was
important to solving a problem, such as a call from JDT-UI
to JDT-CORE, it might be helpful to state that those kinds of
events must be included in the sampled information whether
or not they appear at a sample point. A developer could
then animate the now contextualized sampled information.
More work is needed to understand the kinds of software
engineering tasks for which a developer can benefit from
animating summarized sampled information.

3.2. Case Study #2

This case study focused on the “import from files” oper-
ation. This operation adds files to an existing Eclipse Java
project. The files are copied from the source location into
the location of the Eclipse project workspace. This study
considers Eclipse versions 0.107 and 0.137. The former
is the unoptimized version, and the latter is the optimized
version. Both versions use a Path class, which represents
and gets segments from a filesystem path. In the unopti-
mized version, the implementation of Path stored the re-
source location as one String object, which was parsed
on the fly to retrieve the segments. This implementation
was costly, both in terms of objects allocated and objects

garbage collected. In the optimized version, the implemen-
tation of Path was changed to store the segments in mem-
ory. Although more String objects are held in memory,
fewer strings overall need to be created and garbage col-
lected, improving performance. The problem and the ver-
sions were identified with the help of an expert Eclipse de-
veloper.

3.2.1 AVID View

We used five entities in AVID to investigate the performance
problem. The UI entity represented basic UI operations in
Eclipse. The ImportWizard entity represented the trigger-
ing of the import operation. The Path entity represented
the Path class of interest. The Runtime entity represented
the Eclipse runtime other than Path. The JDK entity repre-
sented the classes comprising the Java development kit. The
mapping file is shown below.

ImportWizard class org.[...].datatransfer.*
UI class org.eclipse.ui.*
Path class org.eclipse.core.runtime.Path
Runtime class org.eclipse.core.runtime.*
Runtime class org.eclipse.internal.runtime.*
JDK class java.*

As in the previous case study, this mapping is not the first
that a developer might specify. We separated out the Im-
portWizard entity from the UI entity after realizing that
there were a number of operations happening involving the
UI. We wanted an entity, ImportWizard, that would allow
us to determine when the behaviour of the import operation
began. We separated the Path entity based on our knowl-
edge of the problem.

As before, we collected a trace from each of the unop-
timized and optimized versions that focused on importing
60 files into a project. We then used AVID to view the
traces, and we found the following three features in the un-
optimized trace that indicated the problem:

F-1 there are 4 calls to Path from ImportWizard, and 62
calls from Path to the JDK, when the ImportWizard is
called.

F-2 roughly one-third of the way through the trace, there
are still 4 calls to Path from ImportWizard, and 159440
calls from Path to the JDK, with over 21000 objects
allocated in the JDK.

F-3 At the end of the trace, there are 1881 calls to Path
from the ImportWizard, and 253368 calls from Path
to the JDK, with over 114000 objects allocated in the
JDK.

We verified these features by viewing the optimized trace
and found the following.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Table 1. Sampling Results for FileSystem Problem
Parameters File size % Size Results

C-1, x=1000 35K 0.3% No features are present
C-1, x=100 205K 1.8% No features are present
C-2, x=1000 793K 7% Partial support of F-2: No calls from JDT-UI are shown, but 17 calls are

present from JDT-CORE to JavaProject at the end of the trace.
C-2, x=100 7.1M 63% Partial support of F-2: No calls from JDT-UI are shown, but 47 calls are

present from JDT-CORE to JavaProject at the end of the trace.
C-3, x=10000 436K 3.8% Partial support of F-2: No calls from JDT-UI are shown, but 17 calls are

present from JDT-CORE to JavaProject at the end of the trace.
C-3, x=1000 2.7M 24% Partial support of F-2: No calls from JDT-UI are shown, but 17 calls are

present from JDT-CORE to JavaProject at the end of the trace.

• When the ImportWizard is called, there are no calls to
Path from ImportWizard.

• Roughly 1/3 of the way through the trace, there are 12
calls to ImportWizard, 30 calls from ImportWizard to
Path, but far fewer calls from Path to the JDK, only
435, and only 131 JDK objects allocated,

• At the end of the trace, there are 18 calls from UI to
ImportWizard (compared to 1 in the unoptimized ver-
sion), 1150 calls (many more!) from ImportWizard to
Path, but far fewer calls from Path to JDK (137518)
and far fewer JDK objects allocated (22941).

3.2.2 AVID With Sampling

As before, we sampled the unoptimized trace in a number of
different ways and viewed the resulting animations to see if
the features described above were evident. In this study, we
considered both control-flow and memory event samplings,
studying the settings shown in Table 2.

3.2.3 Results

Table 2 summarizes the results. The format of the table is
the same as used for Table 1.

Since the features of interest in this case study were
largely based on the magnitude of calls or objects allo-
cated, it was more difficult to determine when a feature
was present when viewing the sampled data. We subjec-
tively determined when the number of calls or objects allo-
cated would have triggered further investigation, and used
the terms “partially evident” if it was possible that the num-
bers would have triggered action on the part of a developer,
and “somewhat evident” if it was possible, but less likely
that the numbers would have triggered a developer to act.

Table 2 shows that we again required context informa-
tion to find the features of the problem. Thus, we were
successful when both control-flow and memory events were

sampled (C-1 and M-1) at a relatively fine-granularity (i.e.,
every 100 events), and when information from the call stack
was included in when sampling based on timestamps (M-3
with M-2). In all of these cases, the sampled data was sig-
nificantly smaller than the original data, ranging from 1%
to 13% the size of the original trace file.

4. Discussion

Based on our case studies, is it useful to software devel-
opers to visualize and animate sampled data? Is sampling
the only way to deal with visualizing and animating systems
as they grow in size and execution time? We discuss each
of these questions in turn below.

4.1. Usefulness

Our case studies show that there exist some kinds of sam-
pling that, when the data is visualized and animated, do re-
tain some of the features of the performance problem being
studied. In these cases, the sampled data is often much less
than half, and sometimes is just 10%, of the size of the orig-
inal trace. Such reductions could enable the collection and
subsequent analysis of data from longer running systems.

Our case studies also indicate that the animation of the
sampled data was an important characteristic, leading to
helpful lines of questioning about the sequencing of be-
haviour. For example, in the first case study, the existence of
unexpected calls between the JavaProject and the UI archi-
tectural entities before the trigger call to the UI entity sug-
gests that a developer may need to investigate how JavaPro-
ject is used in more detail. As another example, recogniz-
ing linked growth patterns over time in calls or allocations
can be beneficial in identifying a performance problem; for
example, in the second case study, we noted the calls to
JDK rising with the calls to the Path entity. Questions of
this form are less likely to arise if only summarized sam-
ple data, such as produced by a profiler, are viewed. The

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

Table 2. Sampling Results for Import Problem
Parameters File size % Size Results

C-1, x=100 & M-1, x=100 875K 1% F-2 is partially evident with 247 calls from Path to JDK and 174
JDK objects allocated. F-3 is somewhat evident with 490 calls
from Path to JDK and 1140 JDK objects allocated.

M-3 with M-1, x=1000 245K 0.3% No features are evident.
M-3 with M-1, x=100 2.2M 2.6% F-1 is partially evident with 3 calls to Path from ImportWizard

when ImportWizard is called.
M-3 with M-2, x=1000 10.1M 12.5% F-2 is partially evident with 661 calls to JDK from Path and

222 JDK objects allocated. F-3 is partially evident with 145
calls from ImportWizard to Path, 984 calls from Path to JDK,
and 1053 JDK objects allocated.

fact that animations of some kinds of sampled data retained
these features is encouraging.

On the other hand, the success of some sampling param-
eters in one case and not the other, such as the success of
C-1 sampling in the second case but not the first, indicate
the sensitivity of the sampling parameters to the task and
the structure of the system. Our work to date has focused
on whether animating samples of traces shows any value;
more work is needed to understand how to pick appropriate
sampling parameters for a given system and task.

Also, since our focus in these investigations was to de-
termine if the features could exist in animations of sampled
data, a large open question is whether a developer would no-
tice such features in the sampled data without prior knowl-
edge of the animations of the trace data.

4.2. Scale

An alternative way to enable developers to more ef-
fectively analyze dynamic information from long-running,
large systems is to rely on on-line approaches, rather than
AVID’s off-line approach. In an on-line approach, the data
is visualized as the system executes, eliminating the need to
collect the data, and possibly limiting the kinds of analyses
that can be conducted. For instance, it may be difficult in an
on-line approach for a developer to investigate the sequence
of behaviour without rerunning the system many times; for
some systems, it may be costly to rerun the system. In these
cases, it may be preferable to use an off-line approach.

Sampling may also have a useful role in on-line ap-
proaches if sampling, as compared to tracing, would perturb
the system less during data collection.

5. Related Work

5.1. Visualizing Sampled Data

The gprof tool is perhaps the most common tool that
software developers use that involves the visualization of
sampled data to aid software engineering tasks. This profil-
ing tool displays a summary of the execution time spent in
each part of the call graph of the program [3]. The use of
sampling in AVID differs in two fundamental ways. First,
the sampling is not intended to be used as a means of esti-
mating the time spent in a piece of the program, and thus,
AVID supports a number of different kinds of sampling,
both event and timestamp based. Second, AVID supports
the animation of the sample data; gprof presents a sum-
mary of the sampled data at the end of execution.

A number of tools that are intended to help improve or
steer the performance of parallel or distributed programs
use sampling as a means of reducing the amount of data
considered. An example of such a tool is the PVaniM sys-
tem that supports on-line and post-mortem visualization of
network computing environments [11]. The on-line visu-
alizations include host views in which the average number
of jobs in the run queue of each host is displayed, and a
communication matrix view showing aggregate and interval
statistics regarding message communication. These views
are updated according to a sampling rate set by the user. The
most similar view to AVID is the communication matrix
view, which is categorized as a debugging view. The authors
note that “[a]lthough the level of detail is reduced compared
to its postmortem counterpart, in many cases the view is still
able to provide some initial indication of anomalous behav-
ior” [11, p. 9].

5.2. Trace Compression

A number of techniques have been developed to collect
and store trace information [7]. These approaches have

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

largely focused on the efficient collection and representa-
tion of detailed execution information, such as which data
locations are referenced. These techniques often use static
analysis of the program text to determine the appropriate
points to use to create a minimal amount of trace infor-
mation. These techniques were developed to assist in the
design of memory systems, and to guide the behaviour of
parallelizing compilers; less detailed traces are needed for
the software engineering tasks we are supporting.

Sefika and colleagues reduced the size of trace informa-
tion visualized by having the developer build architectural
instrumentation into the system of interest [10]. This ap-
proach limits the views a developer can use to examine the
system. It is unclear if the amount of information produced
is sufficiently reduced to support the visualization of long-
running systems.

Reiss and Renieris take a two-phased approach to reduc-
ing the size of traces: they select subsets of the data and
compact it, and then they encode the data in a way that al-
lows the structure of the data to be inferred [9]. An example
of a first phase approach is limiting the collection of dy-
namic information to a certain set of classes in the system.
This approach is also supported by AVID. An example of
a second phase approach is to use run-length encoding or
to build a finite state automaton that is representative of the
trace. The approaches Reiss and Renieris use in the second
phase tend to focus on one kind of event, specifically calls,
and focus on the aggregation of statistics, such as number
of calls, into the encoded representation. These encodings
are not well suited to an animation style visualization.

Hollingsworth and colleagues describe a hybrid ap-
proach to instrumenting a large-scale parallel or distributed
application that is detailed, frugal and scalable [4]. In their
approach, detailed, exact metrics are collected about re-
source usage, such as the time spent in a procedure. These
exact metrics are then sampled. This approach permits ac-
curate reporting of a metric at some chosen frequency. This
approach is well suited to cases where an aggregate statistic
is to be reported against some structure, such as procedures.
To be applicable to animated visualizations such as AVID,
the approach would need to be extended to provide some
temporal ordering of the information, such as x calls hap-
pened between these two entities and then y calls happened
between another two entities, and so on.

6. Summary

AVID supports the off-line visualization and animation
of the execution of a Java-implemented application in the
context of an architectural view defined by the user. This
paper describes the addition of sampling support to AVID,
and our initial investigations into the utility of this sampling
support. Our intent in adding support for visualizing and

animating sampled dynamic information to AVID was to
allow AVID to scale to larger, longer-running systems.

We found that visualizing and animating sampled dy-
namic information may be potentially useful to a software
developer. We found that any dynamic information that is
sampled must include sufficient contextual information to
support interpretation of the animation. Specifically, we
found potential utility when we sampled every xth event
or timestamp, and when we, at that point, also took and re-
ported a snapshot of the call stack: The call stacks can be
compared to add contextual information into the animation.

7. Acknowledgments

This research was funded by CSER in conjunction with
IBM (Ottawa Software Labs). A. Catton, T. Heinrichs, R.
Walker, and A. Wong contributed to the implementation of
AVID. “Java” is a trademark of Sun Microsystems.

References

[1] http://www.cs.ubc.ca/˜murphy/AVID.
[2] http://www.eclipse.org.
[3] S. Graham, P. Kessler, and M. Mckusick. Gprof: a call graph

execution profiler. In Proc. of SIGPLAN ’82 Symp. on Com-
piler Construction, pages 120–126, 1982.

[4] J. Hollingsworth, B. Miller, and J. Cargille. Dynamic pro-
gram instrumentation for scalable performance tools. In
Proc. of SHPCC, pages 841–850, 1994.

[5] http://www.research.ibm.com/jinsight.
[6] http://www.sitraka.com/software/jprobe/

jprobeprofiler.html.
[7] J. Larus. Efficient program tracing. Computer, 26(5):52–61,

1993.
[8] W. D. Pauw, R. Helm, D. Kimelman, and J. Vlissides. Visu-

alizing the behavior of object-oriented systems. In Proc. of
OOPSLA, pages 326–337. ACM Press, 1993.

[9] S. Reiss and M. Renieris. Encoding program executions. In
Proc. of ICSE, pages 221–230. ACM Press, 2001.

[10] M. Sefika, A. Sane, and R. Campbell. Architecture-oriented
visualization. In Proc. of OOPSLA, pages 389–405, 1996.

[11] B. Topol, J. Stasko, and V. Sunderam. Pvanim: a tool for
visualization in network computing environments. Concur-
rency: Practice and Experience, 10(14):1197–1222, 1998.

[12] R. Walker, G. Murphy, B. Freeman-Benson, D. Wright,
D. Swanson, and J. Isaak. Visualizing dynamic software
system information through high-level models. In Proc. of
OOPSLA, pages 271–283. ACM Press, 1998.

[13] R. Walker, G. C. Murphy, J. Steinbok, and M. P. Robillard.
Efficient mapping of software system traces to architectural
views. In Proc. of CASCON, pages 31–40, 2000.

Proceedings of the 11 th IEEE International Workshop on Program Comprehension (IWPC’03)
1092-8138/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

