
Developer Dashboards:
The Need For Qualitative Analytics

Olga Baysal, Reid Holmes, and Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo, Canada
{obaysal, rtholmes, migod}@cs.uwaterloo.ca

Abstract—Prominent tech companies including IBM, Mi-
crosoft, and Google have embraced an analytics-driven culture to
help improve their decision making. Analytics aim to help practi-
tioners answer questions critical to their projects, e.g., “Are we on
track to deliver the next release on schedule?” and “Of the recent
features added, which are the most defect prone?” by providing
fact-based views about their projects. Analytic results are often
quantitative in nature, presenting data as graphical dashboards
using reports and charts. While current dashboards are often
geared towards project managers, they are not well suited to help
individual developers. By analyzing Mozilla developer interviews
we noted that developers face challenges maintaining a global
understanding of the tasks they are working on and that they
desire improved support for situational awareness, a form of
qualitative analytics that is difficult to achieve with the current
quantitative tools.

In this article, we motivate the need for qualitative dash-
boards designed to improve developers’ situational awareness by
providing task tracking and prioritizing capabilities, presenting
insights on the workloads of others, listing individual actions,
and providing custom views to help them manage their workload
while performing their day-to-day development tasks.

I. SOFTWARE ANALYTICS IN PRACTICE

Many organizations have adopted data-driven decision-
making processes and technologies. Embedding analytics into
an organization’s culture can be used to enhance compet-
itive advantage [1]. Analytic approaches strive to provide
actionable real-time insights; these insights are often presented
as quantitative multi-dimensional reports. However, analytic
approaches can be both quantitative and qualitative in nature.
While quantitative analytics can highlight high-level trends of
the data, qualitative analytics enable real-time decision making
for tasks that are lower level and more frequent.

Most analytics approaches focus on quantitative historical
analysis, often using chart-like dashboards (see examples in
Figure 1). These dashboards are often geared towards helping
project managers monitor and measure performance, for exam-
ple, “to provide module owners with a reliable tool with which
to more effective manage their part of the community” [2].

David Eaves, a member of the Mozilla Metrics team who
worked on community contribution dashboards (a quantita-
tive analytic tool), states: “we wanted to create a dashboard
that would allow us to identify some broader trends in the
Mozilla Community, as well as provide tangible, useful data
to Module Owners particularly around identifying contrib-
utors who may be participating less frequently.” Figure 1

demonstrates quantitatively-oriented dashboards for the IBM
Jazz development environment (left) and the Mozilla Metrics
project (right). The Jazz dashboard gives high-level charts
describing various project statistics, e.g., how issues have been
open and closed (bottom left), and how various test cases
execute (bottom middle). The Mozilla dashboard provides a
quantitative description of various community contributions,
including a graph at the top showing where these contributions
were made and a table that describes per-developer statistics
below. While both of these dashboards effectively convey
information about specific aspects of the project, they would
likely be more applicable to managers than to individual
developers as they perform their daily tasks.

Our own study (described in Section III with the complete
results available in [3]) suggests that current dashboards poorly
support developers’ day-to-day development tasks. Developers
require a different kind of dashboard to improve their situ-
ational awareness of their tasks. Ehsan Akhgari, a Mozilla
developer, says, “What I really want is a dashboard to show the
important stuff I need to see — review status on the dashboard,
assigned bug with a new comment or change since the last time
I looked at it, bugs that have a certain status could go on the
dashboard, etc.” [4].

By definition, a qualitative property is one that is described
rather than measured. While quantitative dashboards provide
statistical summaries of various development metrics, qualita-
tive dashboards emphasize the attributes and relationships of
a set of artifacts of interest to a developer. Thus, qualitative
dashboards provide developers with means to define, organize,
and monitor their personal tasks and activities on the project.
Unlike quantitative dashboards that address developer ques-
tions such as “How many bugs are pending on me?” or “How
well did I perform last week?”, qualitative dashboards provide
insights into the specific items developers are working on:
“You look at the bug and you think, who has the ball? What
do we do next?” (P7) and “What has changed since the last
time I have looked at it?” (P6). Developers want to be able to
get information based on what has changed since the last time
they looked at it. Being able to keep abreast of the volume
of changes taking place on active development teams can be
challenging; by helping developers focus on the evolution of
their issues, and those they are interested in, they can better
prioritize their own tasks.



Fig. 1. Quantitative dashboards: Jazz (left) and Mozilla Metrics (right).

II. AWARENESS IN SOFTWARE DEVELOPMENT

The problem of maintaining developer awareness on the
projects and tasks has been previously recognized by the
research community. Cherubini et al. [5] looked at how and
why developers use drawing during software development.
Treude and Storey [6] investigated the role of awareness tools
such as Jazz dashboards and feeds in supporting development
activities. Further more, Fritz and Murphy [7] studied how
developers assess the relevancy of these feeds to help users
deal with the vast amount of information flowing to them in
this form.

A number of tools have been developed to assist developers
with daily tasks and activities [8]–[12]. FASTDash [8] offers
an interactive visualization to enhance team awareness during
collaborative programming tasks. The workspace awareness
tool Palantir [10] follows a similar approach by providing in-
sight into workspaces of other developers, in particular artifact
changes. Mylyn [9] is a task management tool for Eclipse
that integrates various repositories such as GitHub, Bugzilla,
JIRA, etc. It offers a task-focused interface to developers
to ease activities such as searching, navigation, multitasking,
planning and sharing expertise. Yoohoo [11] monitors changes
across many different projects and creates a developer-specific
notification for any changes in the depend-upon projects that
are likely to impact their code. Similarly, Crystal [12] increases
developer awareness of version control conflicts during collab-
orative project development. While these tools provide insight
into the current collaborative activities on a project, we motive
the need for a custom view of the project to help developers
maintain awareness of their own working context.

III. RESEARCH STUDY

To understand how developers engage and interact with the
Bugzilla issue tracking system, we performed a qualitative
study of interviews with 20 core Mozilla developers [4].
The study captures developers’ insights into the strengths,

weaknesses, and possible future enhancements of the Bugzilla
platform, the primary collaboration platform for Mozilla de-
velopers. We applied a grounded theory methodology on the
set of interveiws as we had no predefined themes or categories.
We first created all of the ‘cards’, splitting 20 interview
transcripts into 1,213 individual units; these generally cor-
responded to individual cohesive statements, which we call
comments. In further analysis, the first two authors (coders)
performed two rounds of independent card sort reporting the
intercoder reliability (i.e., degree of agreement) to ensure the
integrity of the card sort. We calculated average scores for four
most popular reliability coefficients for nominal data: percent
agreement (98.5%), Scott’s Pi (0.865), Cohen’s Kappa (0.865),
and Krippendorff’s Alpha (0.865). On average, two coders
agreed on the coding of the content 98.5% of the time.

Through open coding we identified four high-level themes,
among which situational awareness emerged as one of the
major missing pieces developers requested from Bugzilla (19
of the 20 developers provided 208 quotes in support of issues
surrounding situational awareness). The complete results of
the qualitative study are available online [3].

We found that developers face challenges maintaining
awareness of the status of their own issues (18 developers),
for example:

“[I maintain a] gigantic spreadsheet of bugs I am
looking at. It would be useful to know how the bugs
have changed since I last looked at to track if any
work was done [on them]” (P11).

In addition to their own issues, several developers expressed
the desire to be able to non-obtrusively observe the evolution
of other issues without being forced to take an active role (15
developers):

“You don’t want to CC yourself on every bug you
triage” (P15).

Developers also wanted to easily gain an understanding of



their colleagues’ workloads, for instance when requesting code
reviews (12 developers):

“If you could see how many reviews are pending on
a person on that list, this would be a better way
to load balance reviewers. Would be good to have
an easy way to click on the name in some way and
jump on their review queue to see if they have a lot
of easy or hard issues to look at” (P15).

Finally, developers found it challenging to assess other
developers’ roles in the Mozilla organization (12 developers):

“People profiles – you should be able to know more
about them, how long they have been in the system,
what is their ranking, are they module owners or
peers. We need to know who we are talking to. We
need some way to figure out who you are so that we
can treat each other better. We depend on people
so much and Bugzilla is all about bugs not people”
(P15).

We believe that the data developers seek is often available in
the tools they currently use, it is just not accessible in a format
that is amenable to the tasks they are trying to perform. Just
as quantitative dashboards can be generated from a project’s
issue tracker, so can developer-specific qualitative dashboards.

IV. WHAT IS SITUATIONAL AWARENESS?
Situational awareness is a term from cognitive psychology

referring to a state of mind where a person is aware of the
elements of their immediate environment, has an understand-
ing as to their greater meaning, and can anticipate (or plan to
change) these elements in the near future [13]. The term is
used in engineering, for example, to describe how air traffic
controllers work as they track and route air traffic; it is also
an apt description of how software developers must maintain
awareness of what is happening on their project, as they
manage a constant flow of information and react accordingly.

Developers often find themselves trying to identify the status
of an issue — What is the issue waiting on? Who is working
on it? What are the workloads of others? Who is the best
person to review a patch? — as well as trying to track their
own tasks — How many bugs do I need to triage, fix, review,
or follow up on? Which issue should I work on next?

Our study suggests that supplementing quantitative dash-
boards with more developer-specific qualitative data can im-
prove developer situational awareness of their working context.
This awareness will enable developers to keep better track of
the ever-increasing number of issues involved in complex soft-
ware systems. From our own experience in analyzing the data
available in Bugzilla, we also believe the data required to build
developer-specific qualitative dashboards already exists; much
like quantitative analytics, the data just needs to extracted,
analyzed, and presented in the right format so developers can
easily make use of it.

V. QUALITATIVE DASHBOARDS: TASK-ORIENTED VIEWS

Qualitative dashboards can enhance a developer’s daily
activities, such as issue tracking and prioritization, patch

main-board-everything1.png (PNG Image, 979 ! 1014 pixels) -... http://eaves.ca/wp-content/uploads/2011/04/main-board-everyth...

1 of 1 12-12-13 10:08 AM

Fig. 2. Mozilla Community Metrics: total contributions

submission, personal workload management, colleague work-
load estimation, and maintaining lists of issues that need
follow up, etc. While most of the data necessary to generate
qualitative dashboards is present within the Bugzilla database,
it is not easily accessible by the average user. There are
several reasons for this: First, the Bugzilla user interface is
notoriously unintuitive and poorly designed to support process
management, presenting too much information to the user
and little direction; this was noted by seven developers, for
example, “The Bugzilla interface is bad, too many fields”
(P15). Second, Bugzilla’s slow performance hinders real-time
exploration of the data; “the speed of Bugzilla is the major
issue” (P14), “Bugzilla is too slow, this is wasting a lot of
time, very frustrating” (P6). Third, developers are often unable
to correctly formulate queries to access and correlate various
pieces of metadata; “running searches on Bugzilla is kind of
scary sometimes” (P9), “querying in Bugzilla is hard; he has
to spend a few minutes to figure out how to do the query... no
good way to query certain information” (P6).

Mozilla has applied quantitative analytics through two ini-
tiatives: first, to gain insights on the evolution of the com-
munity contributions (Community Management Metrics) [2]
and second, to analyze the project’s performance (Bugzilla
Anthropology) [4]. These initiatives have developed a series of
dashboards that use historical information to monitor commu-
nity contributions (Figures 2–4) or to measure and track trends
in bug fixing efforts (Figure 6). These dashboards support tasks
such as monitoring patch contributions and identifying bug
trends (status- or priority-based). However, they are tailored
towards project managers and their activities; they do not
provide developers with any useful support for their typical
daily tasks. We now describe the four tasks current dashboards
provide support for and, based on them, we motivate the
need for a complementary qualitative approach that is geared
towards helping developers with the decisions they must make
on a daily basis.

1) Assessing community effectiveness and evolution
The current Mozilla community management dash-

board provides insight into community patch contri-
butions. Figure 2 shows the number of contributions
submitted to various Mozilla modules; contributors can
be sorted based on their involvement on the project (em-
ployees, volunteers). This view is useful for identifying



main-board-everything1.png (PNG Image, 979 ! 1014 pixels) -... http://eaves.ca/wp-content/uploads/2011/04/main-board-everyth...

1 of 1 12-12-13 10:08 AM

Fig. 3. Mozilla Community Metrics: patch contributions per developer

broader trends in the Mozilla Community and assessing
how much various members contribute to the project.

While this dashboard is designed to serve Mozilla
module owners to more effectively gauge and manage
their contributors and to support their strategic decisions
around community engagement, developers are unlikely
to benefit from the aggregate statistics of the received
contributions.

2) Measuring developer contributions
Figure 3 illustrates a developer’s patch contributions

for a given month. While this information is useful to
the project managers to explore developer activity, it
does not provide concrete support for the developers’
daily tasks. At the same time, our study found that
developers desired better transparency on the work loads
of others, which largely leverages the same data as the
quantitative graph. Developers wanted this data in order
to determine who is the “right” reviewer to request
a review from (“it’s hard to know when you request
a review, which of these five people has time” (P8)).
The right person to send a patch for review to may
be either the one having faster review turnaround or
having a shorter review queue. To identify the most
suited reviewer for approving a patch, developers need
to be informed about reviewers’ workloads and average
response time. While review queues are frequently used
“to see who might be quickest” (P17), Bugzilla poorly
supports this task (“you can check queues one at a time
but it’s a lot of work” (P8), “the current system punishes
the guy who is the most responsible or that is doing the
best job” (P15)). Apprising developers about the review
queues of the key reviewers for a module is one way of
balancing their work loads.

main-board-everything1.png (PNG Image, 979 ! 1014 pixels) -... http://eaves.ca/wp-content/uploads/2011/04/main-board-everyth...

1 of 1 12-12-13 10:08 AM

Fig. 4. Mozilla Community Metrics: developer effectiveness

Being able to see workloads of the reviewers is
particularly important if a developer is not familiar with
the module/component reviewers (“When submitting a
patch for another component, it’s more difficult, he has
to try to figure out who is good in that component, look
up their review info” (P8)). Knowing what others are
working on can enable assigning more relevant tasks to
people as well as enabling better load balancing.

Developers also wants to be able to track their own
patch activity, as well as determine which patches
are awaiting reviews or who is blocking their reviews.
Figure 5 illustrates a partial view of the qualitative
dashboards that enable developers to track their patches
(first tab called Patches).

Presenting the list of submitted patches and sorting
them by last touched date can help developers stay
aware of the recent changes on their patches such as
new comments, review flag changes, reassignment of
the patch reviewer, etc. In addition, the status of a patch
needs to be more transparent, for example by displaying
the name of the reviewer the patch is pending on.

3) Measuring developer effectiveness
Quantitative dashboards are often used to monitor de-

veloper productivity. Figure 4 demonstrates the produc-
tivity of a developer by providing details on how many
patches he contributed, how many of them successfully
landed into the project’s code base, and how recently
the developer contributed to the project (days since last
landed patch).

Our study suggests that developers find it difficult to
determine what has happened since the last time an issue
was examined (as noted by 12 developers). Bugzilla



Fig. 5. An example of the qualitative dashboards supporting patch tracking
and code review tasks.

makes it hard for developers to track their tasks such as
bug fixing or code review. Developers want to be able
to see the list of issues they need to fix, review, or follow
up by having task specific views (“It would be cool if
Bugzilla people could be assigned with views that would
setup good defaults for the task that they are working
on” (P10)). As shown in Figure 5, the dashboard displays
current (Pending tab) and past (Completed tab) code
review tasks to increase developer awareness of what
tasks are blocking others or what issues were recently
resolved.

Qualitative dashboards such as these can organize
information the way developers want, i.e., by displaying
issues developers report, follow, need to resolve, listing
patches submitted for review, as well as discussions on
the issues (posted comments). Ordering issues by last
touched date allows developers to better monitor recent
changes on their tasks and activities.

4) Determining performance trends
Figure 6 shows a quantitative view displaying bug

trends by status (open vs. close) and by priority (high
vs. low). This view can be helpful for managers who are
trying to get a sense of project momentum while leading
up to various deadlines or to assess the overall health of
the project.

Again, our study found that developers are interested
in status, but in a different way: they want to be able to
quickly determine how their bugs have evolved recently.
Developers want to be informed by the changes to the
issues relevant to their work: “you want to get info based
on what has changed since the last time you looked at.
You wouldn’t need to rely on bug mail, it’s too easy to
miss things in bug mail, could be embarrassing” (P6).

Private and public watch lists can help developers
to organize the large number of emails they need to
filter. Public lists display issues that a developer needs
to resolve or wants to monitor (being a module owner
or QA). Developers often want to track issues they are
interested in “if there is something interesting, I will
CC self on it” (P7). These lists also allow developers to
communicate interests on issues without taking owner-

Fig. 6. Daily open vs close bug change in Firefox over time.

ship, as developers “would like to have a personal list
of bugs without claiming them” (P8).

While public lists are visible to anyone on the project,
private lists are created by the developers themselves. As
one of the developers puts: “we need a way for people
to set their own priorities on bugs, so a team has one,
and product has another, and security yet another, each
one of the initiatives should be represented. If it’s P1 for
all 3 then you know it’s a big deal” (P15). Prioritizing
issues and daily tasks can improve developers’ time
management by accomplishing important tasks first.

Qualitative analytics can be organized around custom views
of the Bugzilla repository supporting ongoing situational
awareness on what is happening on the project. The quali-
tative approach is based on filtering important and relevant
information from the repository and presenting it to the
developers supporting their common tasks such as bug fixing,
feature implementation, code review, triage, etc. Qualitative
analytics enable accessing the data from the existing issue
tracking system to enhance Bugzilla with the means to increase
developers’ situational awareness of the project.

VI. SUMMARY

Quantitative dashboards are the norm within the growing
field of software analytics; they aggregate different kinds
of development information to support high-level business
and management tasks. Qualitative dashboards, on the other
hand, aim to provide rich and detailed support for lower-level
development tasks; they do so by filtering and contextualizing
information extracted from issue tracking systems such as
Bugzilla. The situational awareness afforded by qualitative
dashboards can help developers better manage the constant
influx of data surrounding the evolution of the technical issues
that concern their project, enabling them to better prioritize
their efforts while performing their day-to-day development
tasks.

Developer-oriented qualitative dashboards do not aim to
supplant quantitative approaches; both kinds of dashboard
exist to provide specialized views into the incredible wealth
of information available concerning how modern software
systems are developed and maintained.



REFERENCES

[1] S. LaValle, E. Lesser, R. Shockley, M. S. Hopkins, and N. Kruschwitz,
“Big data, analytics and the path from insights to value,” MIT Sloan
Management Review, vol. 52, no. 2, pp. 21–31, 2011.

[2] D. Eaves, “Developing community management metrics and tools for
mozilla,” April 2011. [Online]. Available: http://eaves.ca/2011/04/07/
developing-community-management-metrics-and-tools-for-mozilla/

[3] O. Baysal and R. Holmes, “A Qualitative Study of Mozillas Process
Management Practices,” David R. Cheriton School of Computer
Science, University of Waterloo, Waterloo, Canada, Tech. Rep. CS-
2012-10, June 2012. [Online]. Available: http://www.cs.uwaterloo.ca/
research/tr/2012/CS-2012-10.pdf

[4] M. Best, “Bugzilla anthropology,” March 2012. [Online]. Available:
https://wiki.mozilla.org/Bugzilla Anthropology

[5] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko, “Let’s go to
the whiteboard: how and why software developers use drawings,”
in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2007, pp. 557–566. [Online]. Available:
http://doi.acm.org/10.1145/1240624.1240714

[6] C. Treude and M.-A. Storey, “Awareness 2.0: staying aware of
projects, developers and tasks using dashboards and feeds,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, 2010, pp. 365–374. [Online].
Available: http://doi.acm.org/10.1145/1806799.1806854

[7] T. Fritz and G. C. Murphy, “Determining relevancy: how software
developers determine relevant information in feeds,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
2011, pp. 1827–1830. [Online]. Available: http://doi.acm.org/10.1145/
1978942.1979206

[8] J. T. Biehl, M. Czerwinski, G. Smith, and G. G. Robertson,
“Fastdash: a visual dashboard for fostering awareness in software
teams,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2007, pp. 1313–1322. [Online]. Available:
http://doi.acm.org/10.1145/1240624.1240823

[9] M. Kersten and G. C. Murphy, “Using task context to improve program-
mer productivity,” in Proc. of the ACM-SIGSOFT Intl. Symposium on
Foundations of Software Engineering, 2006, pp. 1–11.

[10] A. Sarma, Z. Noroozi, and A. V. D. Hoek, “Palantir: Raising awareness
among configuration management workspaces,” 2003, pp. 444–454.

[11] R. Holmes and R. J. Walker, “Customized awareness: Recommending
relevant external change events,” in Proc. of the ACM/IEEE Intl. Conf.
on Software Engineering, 2010, pp. 465–474.

[12] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Crystal: Precise and
unobtrusive conflict warnings,” in Proc. of ESEC-FSE Tool Demo, 2011.

[13] M. R. Endsley, “Toward a theory of situation awareness in dynamic
systems: Situation awareness,” Human factors, vol. 37, no. 1, pp. 32–
64, 1995.


