
Lightweight, semi-automated enactment of
pragmatic-reuse plans

Reid Holmes and Robert J. Walker

Laboratory for Software Modification Research
Department of Computer Science

University of Calgary
Calgary Alberta, Canada

Abstract. Reusing source code in a manner for which it has not been designed
(which we term a pragmatic-reuse task) is traditionally regarded as poor prac-
tice. The unsystematic nature of these tasks increases the likelihood of a devel-
oper pursuing one that is infeasible or choosing not to pursue a feasible one. In
previous work, we demonstrated that these risks can be mitigated by providing
support to developers to help them systematically investigate and plan pragmatic-
reuse tasks. But planning is only a small part of performing a pragmatic-reuse
task; to enact a plan, the developer would have to manually extract the code they
want to reuse and resolve any errors that arise from removing it from its origi-
nating system. This paper describes an approach that semi-automates the process
of pragmatic-reuse plan enactment, automatically extracting the reused source
code and resolving the majority of compilation errors for the developer through
lightweight (i.e., computationally simple but analytically unsound) transforma-
tions. By reducing the number of low-level compilation issues (which are typi-
cally trivial but copious) that the developer must resolve, they are able to focus
on the higher-level semantic and conceptual issues that are the main barrier to the
successful completion of the reuse task. The efficacy of our approach to save de-
veloper effort is evaluated in a small-scale, controlled experiment on non-trivial
pragmatic-reuse tasks. We find that our approach improves the likelihood of a
pragmatic reuse task being successful, and decreases the time required to com-
plete these tasks, as compared to a manual enactment approach.

Keywords: Pragmatic software reuse, lightweight source code transformations

1 Introduction

As developers write code, they encounter situations where the functionality they are
developing is familiar to them; either they have developed something similar before, or
they know of some existing software that provides similar functionality [1]. Unfortu-
nately, the existing functionality is often not designed in a way that permits its reuse in
a black-box manner (e.g., as a framework, component, or product line) [2]. The devel-
oper is then left with few choices: re-implement the functionality, which is expensive
and does not leverage existing mature code; re-modularize the existing code, which can
be expensive and may not make sense for the original system; or to reuse the existing
code in an ad hoc copy-and-modify process, which can lead to poor decisions being
made [3, 4]. Copy-and-modify is often the pragmatic choice for software reuse in real
scenarios.



Industrial developers undertake pragmatic-reuse tasks as a means to save time and
leverage the testing effort put into existing source code; however, traditional approaches
to pragmatic reuse can lead the developer to make poor decisions: they can commit too
early to completing infeasible tasks; or they can avoid feasible reuse tasks due solely
to superficial complexities. In previous research we addressed the shortcomings of tra-
ditional pragmatic-reuse approaches by supporting a lightweight means for simultane-
ously investigating and planning pragmatic-reuse tasks [5]. While planning can greatly
increase the developer’s comprehension of a pragmatic-reuse task, a plan remains an
abstract artifact; for a plan to be useful, it must be followed (“enacted”) to success-
fully complete the pragmatic-reuse task. Without tool support to enact pragmatic-reuse
plans, three shortcomings remain: (1) the developer has to manually locate and integrate
reused source code; (2) the abundance of low-level compiler errors during integration
can obscure more complex high-level semantic and conceptual issues; and (3) investi-
gating different options in the reuse plan can be expensive due to the costs of repeatedly
manually modifying the source code.

Previous research has examined means for automatically or semi-automatically
making adaptive modifications to source code. Much research requires that the source
being adapted must be designed for reuse [6–9] or at least be compilable before adapta-
tion [10, 11]; these requirements are not met in pragmatic-reuse scenarios. Some work
has considered means for automatic adaptation, but requires that the adapted entities
be formally specified [12, 13]; such formal specifications are not typically available in
pragmatic-reuse contexts.

While pragmatic-reuse plans can help the developer to understand the reuse task at
a high-level, it removes him from the realities of the source code; without enacting the
plan it is difficult to tell if a decision in the plan makes the reuse task infeasible. To
reduce the effort needed to enact a pragmatic-reuse plan, we have designed an approach
for the semi-automatic enactment of these plans. Key to our approach is the applica-
tion of lightweight (i.e., computationally simple but analytically unsound) transforma-
tions to the reused source code. We have implemented this approach in a tool called
Procrustes1, a plug-in to the Eclipse integrated development environment (IDE)2. Pro-
crustes copies the code to be reused to the developer’s project, and then modifies the
code to be reused to minimize the number of dangling references the developer must
inspect and correct; dangling references that cannot be transformed easily are flagged
for the developer’s attention. By semi-automating the enactment phase, the developer
can instantly receive feedback on the implications of the plan and focus on the higher-
level semantic problems that may inhibit the reuse task. This feedback loop makes it
practical to quickly consider alternative decisions for a particular reuse task, thereby
allowing the developer to create a higher-quality result.

We have performed an initial evaluation of our approach through two investigations
into pragmatic-reuse tasks on two medium- to large-scale systems: a comparative case
study to determine the minimum necessary effort for these tasks; and a controlled ex-

1 The name comes from a figure in Greek mythology who would invite passersby to lie in a bed,
whereupon he would force them to fit by stretching or amputation.

2 http://eclipse.org (v3.2.1)



periment involving 8 developers enacting pragmatic-reuse plans manually and with our
semi-automated approach.

The remainder of the paper is structured as follows. Section 2 provides additional
background about pragmatic-reuse plans. Section 3 describes our lightweight approach
for semi-automating the enactment of pragmatic-reuse plans. Related work is consid-
ered in Section 4. Our evaluation is presented in Section 5. Remaining issues are dis-
cussed in Section 6.

Our previous work contributed a method for investigating and planning pragmatic-
reuse tasks. In contrast, this paper contributes a lightweight approach for the semi-
automatic enactment of pragmatic-reuse plans; this is evaluated by comparing the suc-
cess rates of pragmatic-reuse tasks with and without our lightweight approach.

2 Background: Pragmatic-Reuse Plans
Developers currently perform pragmatic reuse tasks manually. They identify some frag-
ment of source code they want to reuse and integrate with their project. They then suc-
cessively traverse through compiliation errors that have arisen and resolve them one at
a time (integrating more code as necessary). Unfortunately, for large reuse tasks it is
difficult to tell at the outset if the task will be successful. We introduced the concept
of the pragmatic-reuse plan to help developers understand the scope of pragmatic-reuse
tasks before the investment of integrating the reused code [5].

A pragmatic-reuse plan consists of a list of tagged program elements. Classes, meth-
ods, and fields can be marked as as accepted (“I want to reuse this code”), rejected (“I
don’t want to reuse this code”), or remapped (“I want to redirect dependencies on this
code to be on something within my own system”). Special cases exist for injecting code
into classes and extracting fields by reusing only specific fields from a class.

3 Procrustes: Semi-automating Enactment
Procrustes bridges the gap between the conceptual intent of a pragmatic-reuse plan and
the realization of the task. To do this, Procrustes copies the source code fragments that
the developer intends to reuse from the originating project into the target project (see
Section 3.1) according to the pragmatic-reuse plan. Using the plan, Procrustes integrates
the reused code with the target project by resolving the dangling references that arose
from removing the code from its originating environment (see Section 3.2).

3.1 Extraction

After the developer activates Procrustes (by pressing the “enact plan” button in the
IDE), it locates all of the source code corresponding to accepted nodes in the reuse
plan and first copies this code into the target project. The original package hierarchy is
maintained within the extracted code, for ease of comprehension.

After Procrustes has copied the code into the target project, dependencies between
the reused classes will remain valid as the package structure was maintained. Any de-
pendencies to structural entities outside those being reused would normally cause com-
pilation problems; however, the integration portion of Procrustes resolves many of these
(see Section 3.2).



3.2 Integration

During this phase, the source code that has been migrated from the original system to
the target system must be manipulated to resolve any compilation problems that have
arisen. When source code is removed from the context for which it was written and
placed into a foreign environment, many of its dependencies can be unfulfilled. The
unfulfilled dependencies in the reused code are manifested as dangling references to
classes, methods, and fields that were not reused (and do not exist in the target project).

Using the model that represents the pragmatic-reuse plan, Procrustes can pre-
compute each of the changes that the tool should perform to repair many dangling
references. The integration process proceeds in four main steps:

Managing source code additions. The code addition step adds new code to those
entities previously migrated to the target project in Section 3.1. There are two cases that
must be handled: code injection, and field extraction. For code injection, any fragment
provided by the developer is inserted into its target class (as specified in the reuse plan).

For field extraction, any fields in the plan that have been marked for extraction are
copied from the class in which they were declared into the target class specified in the
pragmatic-reuse plan. Moving the field only updates its declaration, not its references
in the reused code (this happens in the next step). Again, the import statements are also
updated to reflect this addition to the target class.

Managing dangling references. The management of dangling references is the most
complex step in the integration phase. Two primary classifications of dangling refer-
ences are managed: (1) references to fields, calls to methods, and references to super-
types that were rejected in the reuse plan; and (2) calls to methods and referenced fields
that have been injected, extracted, or remapped in the reuse plan.

Procrustes searches each accepted source element for dependencies on other ele-
ments that have been rejected. If a dependency on a rejected field or method is found,
it is managed by commenting-out the entire statement containing code corresponding
to the dependency within the accepted code. Procrustes comments-out rejected depen-
dencies, rather than remove them completely, rather than remove them completely, as
their details could still be informative to the developer. These comments are accompa-
nied with a tag to indicate that the change was made by Procrustes. This also allows
the developer to easily locate each change to the source made by Procrustes using tra-
ditional search tools. For the sake of simplicity, Procrustes rejects field references and
method calls only at the statement level; despite the inherently unsound nature of such
a lightweight approach to transformations, in practice we have found it to be effective
(Section 5).

If the pragmatic-reuse plan has reused a class but not some subset of its supertypes,
the tool must remove references to those supertypes. This often occurs as developers
trim the functionality they are interested in from an inheritance hierarchy. Any num-
ber of supertypes can be removed. If the subclass was dependent on a method within
a rejected supertype this would be shown as a dependency between a method in the
subtype and a method on the supertype during the planning process. This dependency
would have been resolved at the beginning of this step.



Finally, any accepted element with a structural dependency that has been remapped
is handled. These cases are simpler than in the rejected-element case as code does
not disappear; it is simply redirected. This step handles 5 cases: calls to injected and
remapped methods and references to injected, extracted, and remapped fields.

Managing unnecessary code. This step removes methods and fields marked as re-
jected in the reuse plan that are declared within accepted classes and interfaces. For
code readability, rejected fields and methods are completely removed from the source
code by removing them from their containing class, rather than just being commented
out. The tool only needs to remove methods and fields that are children of classes that
have been accepted, i.e., if a type is completely rejected or remapped Procrustes does
not need to delete any code as it would not have been integrated to the target system.

Finalizing source code modifications. Each of the changes made by the three previous
steps were made to an intermediate representation of the code, not directly to its text.
This separation minimizes the chances that one change will cause another alteration
to fail. After all the steps are complete, Procrustes applies the changes to the files and
writes them to disk, collecting statistics about the scope of the changes it has made.

3.3 Implementation

Procrustes is implemented as an Eclipse plug-in. By creating the tool as a plug-in we are
able to leverage many of the features that Eclipse provides for parsing, compiling, and
manipulating Java files. Each of the nodes in the reuse plan matches a specific structural
element in Eclipse’s Java abstract syntax tree (AST). All of our changes are recorded
using the Eclipse ASTRewrite class. This class aggregates the changes made during
each of the steps of the integration phase; the source files are all changed and written to
disk only at the end of this phase.

4 Related Work
Previous work in a variety of areas bears similarity to the problem we address; however,
none meets all the requirements for (semi-) automating the enactment of pragmatic-
reuse plans.

Most reuse literature emphasizes designing for reuse, for example, in object-
oriented programming [14], frame-based reuse [7], domain-specific language-based ap-
proaches [6], and component-based approaches [8, 9]. Such approaches are inappropri-
ate in our context, as pragmatic reuse entails situations where the original design did
not anticipate the desired reuse scenario.

Transformation-based approaches to reuse were prevalent in the 1980s, for example,
that of Feather [10]. Such approaches were based on the notion of formally correct re-
finement, thus requiring compilable programs and (usually) formal specifications; nei-
ther is available in our context. Jackson and Rinard recognize the continuing value of
unsound analyses [15], for both their usefulness and ease of efficient implementation.

Several systems have been developed to identify reusable components. Lanubile and
Visaggio developed a technique based on program slicing to identify reusable source
code [16]. The CARE system [17] identifies and extracts reusable components using a



metrics-based approach; the applicable components must have no or few external de-
pendencies. These systems do not allow the developer to specify which detailed entities
are to be reused, or how to deal with problematic dependencies.

Various approaches attempt to adapt code for use in a novel context. The Adapter
object-oriented design pattern [11] adapts classes or objects to conform to a required
interface, but maintains all the dependencies of the original classes or objects; in our
context, we need to be able to eliminate or replace such dependencies. Approaches
like that of Gouda and Herman [12] and of Yellin and Strom [13] automatically adapt
components to new contexts; however, they require complete, formal specifications to
operate that are not typically available or appropriate for pragmatic-reuse tasks.

5 Evaluation
The intent of our approach is to greatly reduce the effort required to enact a pragmatic-
reuse plan. By reducing this effort, developers can better judge the merits of their reuse
tasks to maximize their chances of having desirable outcomes. To evaluate Procrustes
we set out to answer two questions: (1) How much effort can semi-automating the en-
actment of pragmatic-reuse plans save developers? (2) Does semi-automating the enact-
ment of pragmatic-reuse plans affect the outcomes of pragmatic-reuse tasks performed
by developers? Each question was addressed with its own evaluation.

In both evaluations, “completion” was defined as the successful execution of a test
suite that we provided for the purpose. One test suite was implemented as an Eclipse
plug-in, while the other was a standalone application; we henceforth refer to both as
test harnesses.

5.1 Task descriptions

Both evaluations used the same two tasks. Each of these tasks involved extracting spe-
cific functionality from an existing system and integrating it into a new system. Each
task operated on a different open-source Java system from a different domain.

Metrics lines-of-code calculator. The Metrics Eclipse plug-in3 can compute 23 dif-
ferent metrics (e.g., lines of code, cyclomatic complexity, efferent coupling, etc.) for
resources inside Eclipse projects. This plug-in contains 229 classes comprising 14.5
thousand lines-of-code (kLOC). The goal of this task was to reuse the lines-of-code
(LOC) calculator from this project; however, the system was not designed to enable
individual metrics to be reused without the remainder of the Metrics plug-in.

The reuse plan for this task involved reusing portions of 8 classes. Successful com-
pletion of this task involved reusing 392 LOC. For the task to be a success, the reused
code had to compute the LOC for every class in every project in the Eclipse workspace
when activated by the test harness.

Azureus network throughput view. Azureus4 is a client application for the Bit-
Torrent peer-to-peer file-sharing protocol. Azureus contains 2,257 classes comprising
221 kLOC. It contains a view that visualizes its network throughput for the user. The

3 http://metrics.sf.net v1.3.6
4 http://azureus.sf.net v2.4.0.1



goal of this task is to extract this network throughput view from Azureus and integrate
it into a new system. This feature was not designed to be reused outside of Azureus.

The reuse plan for this task involved reusing portions of 6 classes. Successful com-
pletion of this task involved reusing 366 LOC. To succeed at the task, the reused code
had to be able to correctly display a data set provided in the test harness.

5.2 Analysis of minimum required effort

Our first evaluation considered how much effort Procrustes can save a developer by
semi-automating the enactment of a pragmatic-reuse plan. We performed both tasks
both manually and using Procrustes. The number of compilation errors present after
copying all of the required code (in the manual case) or pressing the “enact plan” but-
ton in the Procrustes-supported case is given in Table 1. These numbers are the first
indicator to the developer of the amount of work facing them before they can complete
the task.

Case Procrustes Manual Error reduction
Metrics 3 62 95.2%
Azureus 11 32 65.6%

Table 1. Compilation errors for each task and treatment.

Compilation errors alone are not always a good indicator of required effort. Often,
making one small change in the source code can remedy (or create) several errors. To
get a true sense of the minimum amount of effort the developer would need to expend
to successfully complete each reuse task, we investigated each task in terms of “edits”.
An edit represents a single conceptual change the developer makes to the source code.
The minimum number of edits required to successfully complete each task with each
treatment is given in Table 2.

Case Procrustes Manual Edit reduction
Metrics 2 60 96.7%
Azureus 4 25 84.0%

Table 2. “Edits” required for each task and treatment.

Some edits require more thought and investigation on the part of the developer to re-
solve than others. These difficult edits arise due to conceptual mismatches between the
original and target systems [2]. For the Metrics task, only one of the edits represented
a conceptual mismatch that arose from removing the reused code from the system for
which it was designed. Three edits in the Azureus task represented conceptual mis-
matches; these were common between the two treatments. While Procrustes does not
resolve any of the conceptual mismatch errors, it helps the developer to quickly identify
them by resolving all of the trivial compilation errors that occlude them. This difference
is especially evident when a developer repeatedly iterates on a reuse plan.

5.3 Task effectiveness experiment

Our second investigation sought to determine if developers performing pragmatic-reuse
tasks had better outcomes using Procrustes. We performed a controlled experiment



with eight developers. Four of these were industrial developers (I1 through I4) and
four were software engineering graduate students (G1 through G4). The participants
had between 6 years (an industrial developer) and 12 years of experience (also an in-
dustrial developer). Each participant was randomly assigned a task–treatment pairing.
Each task–treatment pairing was completed by two graduate students and two indus-
trial developers. Each participant used Procrustes for one task and performed the other
task manually. We created a reuse plan for each task and provided identical versions for
each treatment. A time limit of one hour was set for each task; we chose this time limit
as it seemed like a reasonable amount of time for a developer to invest in this kind of
task. We recorded whether or not the participants succeeded or failed for each task, how
long they spent performing the task, and collected their final code for later analysis. Af-
ter completing both tasks the participants completed a follow-up questionnaire (see the
website cited earlier for details).

Fig. 1. Results of the task effectiveness experiment. Green/hatched bars indicate success.
Red/solid bars indicate failure.

The results of the experiment are shown in Figure 1. The figure depicts successful
task–treatment pairings in green (diagonal hatching in greyscale). Those task–treatment
pairings that were failures are indicated in red (solid in greyscale). The graph clearly
shows that the participants successfully completed more tasks using Procrustes (8 out
of 8) than with the manual treatment (4 out of 8). It is also clear that, for these tasks,
developers were able to complete the tasks in less time using Procrustes than when
undertaking them manually.

Manual treatment. The four participants who manually enacted the Metrics LOC
reuse task were the least successful. By examining their resulting code and reading
their comments in the questionnaire, it became clear that they knew they had a problem
to fix, but they did not know where this problem was. At the outset of this manual task,
each participant (I2, I4, G1, G3) had 62 compilation errors to resolve; in the process of



resolving these errors, they seemed to become disoriented. While each of them ended up
with code that compiled, only I2 successfully completed the task (in 47 minutes). One
of the participants became so frustrated with this task that after 24 minutes he gave up.
One of the participants who failed at this task (I4) reported, “The manual approach was
mostly drone work; it took longer to get the target project into a state where interesting
problems could be solved.” Even I2, who was successful, stated, “[The manual task was]
not hard, very tedious though. I was sitting there going ‘this should be automated.’”

The other 4 participants undertook the manual version of the Azureus task. Only one
of these developers (I1) failed to complete the task (after 60 minutes); the rest managed
to finish in an average of 40 minutes.

Automated treatment. Each of the participants who undertook the Metrics LOC task
using Procrustes managed to successfully complete the task (in an average of 19 min-
utes). In the questionnaires, these developers mentioned that they were able to concen-
trate on the 3 compilation errors that remained after Procrustes ran. Since two of these
errors were trivial, they were able to focus on the single remaining error (which was a
conceptual mismatch). While this error was tricky to solve, each of them was able to
get the code to work successfully with the test harness.

All the participants also completed the Azureus task using Procrustes (in an aver-
age of 10 minutes). These developers did not seem to have any trouble changing the
reused code to use the specific fields for blue rather than the blues array. For this task,
I4 said, “There where still some syntactic mismatches, but what I found was that the
problems that remained were more directly related to the actual misalignments between
use contexts; they were more directly related to the reuse I was trying to achieve.”

5.4 Lessons learned

The first evaluation demonstrated the amount effort that Procrustes can save the devel-
oper. The second evaluation showed that this savings can translate into an increased rate
of success for pragmatic-reuse tasks. The controlled experiment showed that Procrustes
enabled the developers to quickly locate the conceptual mismatches that were the real
barrier to completing the tasks; these mismatches could not be found by looking at the
reuse plan alone.

6 Discussion
In this section, we consider a number of issues regarding our claims, evidence, and
conjectures about the current work, and where the work should go from here.

6.1 Does semi-automating enactment matter?

A pragmatic-reuse plan remains an idealization until it is enacted to complete a
pragmatic-reuse task. Semi-automation aids the developer by eliminating the most triv-
ial issues so that the developer can focus on addressing non-trivial problems. In contrast,
Participant G1 failed at the manual treatment of the Metrics task because he could not
resolve the conceptual mismatch between the source and target environments; he re-
ported spending 40 of 60 minutes resolving low-level compilation errors. This pattern



recurred: in all 4 of the unsuccessful manual treatments, the developers were able to get
the code to compile without error; however, in 3 of the 4, the developers also used their
full 60 minutes without completing the task.

We believe this time-savings also matters from an industrial perspective; develop-
ers are only willing to invest a limited amount of time into these kinds of tasks be-
fore building the functionality from scratch. As Participant I2 states, “I wouldn’t use [a
pragmatic-reuse plan] on its own... I don’t care that the model is nice, it’s running code
that counts. The automation provided by Procrustes gives me the bridge I need to make
the model valuable.” And, “[The manual approach] gives me a jigsaw puzzle where I’ve
opened the box and have all the pieces. [Procrustes] gives me a 90% complete puzzle
and I just have to put in the last pieces. It’s what makes the tool usable to me.”

6.2 Do lightweight transformations suffice?

We have developed Procrustes specifically to minimize the number of compilation er-
rors associated with reusing source code that was not designed for reuse. As such, it
applies only the most basic of transformations. Significant conceptual mismatches [2]
will not be repaired by these transformations. However, in our experience we have found
that the vast majority of mismatches encountered are trivial in nature, but copious, and
that the transformations applied by Procrustes suffice to repair these.

As Participant I4 states, “The automatic enactment brought the target project into
a state where I could more immediately start working out the higher-level mismatches
between contexts. The remaining compilation errors were more directly related to these
[higher-level] mismatches. In contrast, the manual enactment involved a lot more itera-
tions of compile/fix and the errors [were] more low-level.”

Using a more complex means of specifying the transformations could allow the en-
actment task to be fully automated. We suspect that the cost of using a fully-expressive
transformation language would be significantly greater than the cost of manual enact-
ment. Procrustes provides an alternative to these two approaches.

6.3 Representativeness of participants and tasks

The number of participants was fairly small, at only eight. We have not attempted to
quantify the relative effort of the treatments with statistical significance and have re-
ported times only to give a sense of scale and trends. Half of our participants were in-
dustrial developers and half were experienced graduate students. While there was some
variation between these two groups, the trend in the results is unambiguously in favour
of Procrustes.

Our first evaluation also considered the “ideal” developer who could complete her
tasks with the minimum amount of work. While this developer is also not representative,
she does represent the lower-bound that the best developers could strive to achieve. Even
this developer had to perform considerably more work with the manual treatment than
with the semi-automated one.

Only two tasks were performed on two systems. Each of these tasks were non-
trivial, being taken from real development scenarios and not synthesized for the sake
of the research; each involved the reuse of functionality that had not been designed to



be reused in the way we needed. The systems were of medium- to large-scale from two
disparate domains.

For the sake of experimental control, we provided the participants with pragmatic-
reuse plans for their tasks. While this control enabled us to compare the effectiveness
of multiple developers performing the same tasks with different treatments, future eval-
uations will involve developers creating and enacting their own reuse plans.

6.4 Net cost of pragmatic reuse

One might question how much effort must be expended to create or to interpret
pragmatic-reuse plans, and whether this effort would overwhelm the reported benefits
of semi-automated enactment. In our experiment, each pragmatic-reuse plan required
less than 30 minutes to construct by us, despite our lack of experience with the original
systems. The 30 minute investment required to create the plans involved gaining an un-
derstanding of the originating system, something that developers would need to do in
both manual and tool-supported scenarios.

While our evaluation indicates that Procrustes can help with pragmatic-reuse tasks,
going forward we will have to evaluate the relative performance of three different
cases: (1) a developer creating functionality from scratch; (2) a developer manually
reusing similar functionality from a pre-existing system; and (3) a developer creat-
ing a pragmatic-reuse plan, and enacting it with Procrustes. With such an evaluation,
we would like to gain an insight into the relative merits of tool-supported end-to-
end pragmatic-reuse scenarios compared to more traditional unanticipated-reuse ap-
proaches.

7 Conclusion
This paper has described Procrustes, a tool for semi-automatically enacting pragmatic-
reuse plans. By resolving the bulk of the compilation errors that arise from reusing
a piece of source code out of the context it was designed for, Procrustes allows the
developer to focus their effort on resolving errors that represent conceptual mismatch
between the source and target systems.

We performed two evaluations to determine the efficacy of Procrustes. In the first
evaluation we found that a putative developer doing the least amount of work possible
would have to perform significantly more work to enact a pragmatic-reuse plan man-
ually than with Procrustes. The second evaluation found that participants using Pro-
crustes were far more likely to successfully complete a pragmatic-reuse task (8 out of
8 cases) than those performing the same tasks manually (4 out of 8 cases). Additionally,
in all successful tasks, the use of Procrustes reduced the time needed for the enactment
process to between 25% and 40% of the times for the manual treatments, on average.
The implication of these studies is that semi-automation can make it feasible for the de-
veloper to iterate on their reuse plan, allowing them to explore the concrete realization
of different plan alternatives, leading to higher-quality reuse plans and more successful
reuse tasks.

Procrustes utilizes computationally simple but analytically unsound transformations
to enact a pragmatic-reuse plan. Because of their simplicity, these transformations are
fast to perform. Despite their lack of soundness, they can effectively filter out trivial



mismatches from the developer’s attention, allowing them to focus on whether and how
to address non-trivial mismatches. The lightweight nature of our approach, coupled with
our appreciation of the needs of the developer, are key to its success.

8 Acknowledgments
We wish to thank Brad Cossette, Rylan Cottrell, Jonathan Sillito, and the other members
of the Laboratory for Software Modification Research for their helpful comments. This
work was supported in part by the Natural Sciences and Engineering Research Council
of Canada and in part by IBM Canada.

References

1. Sen, A.: The role of opportunism in the software design reuse process. IEEE Transactions
on Software Engineering 23(7) (1997) 418–436

2. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch: Why reuse is so hard. IEEE
Software 12(6) (1995) 17–26

3. Garnett, E.S., Mariani, J.A.: Software reclamation. Software Engineering Journal 5(3)
(1990) 185–191

4. Krueger, C.W.: Software reuse. ACM Computing Surveys 24(2) (1992) 131–183
5. Holmes, R., Walker, R.J.: Supporting the investigation and planning of pragmatic reuse tasks.

In: Proceedings of the International Conference on Software Engineering. (2007) 447–457
6. Neighbors, J.M.: Draco: A method for engineering reusable software systems. In Biggerstaff,

T.J., Perlis, A.J., eds.: Software Reusability. Volume 1: Concepts and Models of ACM Press
Frontier. Addison–Wesley, Boston, United States (1989) 295–319

7. Bassett, P.G.: The theory and practice of adaptive reuse. In: Proceedings of the Symposium
on Software Reusability. (1997) 2–9

8. Mezini, M., Ostermann, K.: Integrating independent components with on-demand remod-
ularization. In: Proceedings of the Conference on Object-Oriented Programming, Systems,
Languages, and Applications. (2002) 52–67

9. Estublier, J., Vega, G.: Reuse and variability in large software applications. In: Proceedings
of the Foundations of Software Engineering. (2005) 316–325

10. Feather, M.S.: Reuse in the context of a transformation-based methodology. In Biggerstaff,
T.J., Perlis, A.J., eds.: Software Reusability. Volume 1: Concepts and Models. Addison–
Wesley (1989) 337–359

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison–Wesley (1994) Chapter on the Adapter design pattern.

12. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Transactions on Software Engi-
neering 17(9) (1991) 911–921

13. Yellin, D.M., Strom, R.E.: Protocol specifications and component adaptors. ACM Transac-
tions on Programming Languages and Systems 19(2) (1997) 292–333

14. Johnson, R.E., Foote, B.: Designing reuseable [sic] classes. Journal of Object-Oriented
Programming 1(2) (1988) 22–35

15. Jackson, D., Rinard, M.: Software analysis: a roadmap. In: Proceedings of the Conference
on The Future of Software Engineering. (2000) 133–145

16. Lanubile, F., Visaggio, G.: Extracting reusable functions by flow graph-based program slic-
ing. IEEE Transactions on Software Engineering 23(4) (1997) 246–259

17. Caldiera, G., Basili, V.R.: Identifying and qualifying reusable software components. Com-
puter 24(2) (1991) 61–70


