
The End-to-End Use of Source Code Examples: An Exploratory Study

Reid Holmes
Dept. of Computer Science & Engineering

University of Washington
Seattle, WA, USA

rtholmes@cs.washington.edu

Rylan Cottrell, Robert J. Walker, Jörg Denzinger
Dept. of Computer Science

University of Calgary
Calgary, AB, Canada

cottrell, rwalker, denzinge@cpsc.ucalgary.ca

Abstract

Source code examples are valuable to developers needing to
use an unfamiliar application programming interface (API).
Numerous approaches exist to help developers locate source
code examples; while some of these help the developer to se-
lect the most promising examples, none help the developer
to reuse the example itself. Without explicit tool support for
the complete end-to-end task, the developer can waste time
and energy on examples that ultimately fail to be appropri-
ate; as a result, the overhead required to reuse an example
can restrict a developer’s willingness to investigate multiple
examples to find the “best” one for their situation. This pa-
per outlines four case studies involving the end-to-end use
of source code examples: we investigate the overhead and
pitfalls involved in combining a few state-of-the-art tech-
niques to support the end-to-end use of source code exam-
ples.

1. Introduction
Developers frequently use source code examples as the ba-
sis for interacting with an application programming inter-
face (API) [13]. A source code example can serve as the
explicit origin for a reuse task, when the example fits a de-
veloper’s context sufficiently well. The process for inter-
acting with source code examples for reuse involves three
main phases [12, 5, 3, 6]: location, in which the developer
queries for a set of examples to consider for relevance to
the task; selection, in which the developer investigates those
examples to identify those that match the requirements and
are similar to their own system; and integration, in which
the developer copies and modifies the chosen example to fit
within their own application. These phases can be iterative:
for example, there is no guarantee that a selected example
will be appropriate until the results of integration are exam-
ined. At best, this end-to-end process currently requires the
use of independent tools that cover different phases.

Many different approaches exist to help developers lo-

cate source code examples (see [10] for an overview). Each
of these approaches, by varying means, permits the devel-
oper to investigate and to select the example which they
deem most promising. However, these approaches present
this information in terms of relevance to the developer’s
query; as such, the choice of examples and the order does
not consider the developer’s need to find an example that
integrates well. Few approaches exist to support the small-
scale integration of source code (see [1] for an overview),
and these all make assumptions that make them inappropri-
ate for the example integration task. Thus, despite the fact
that each tool’s design choices make sense in isolation, it is
unlikely that any simple combination of existing approaches
will suffice as end-to-end support for example reuse tasks.

We conduct four case studies into the application of a few
of these approaches to the end-to-end process of example
reuse; specifically, we look at Google Code Search1 and the
Strathcona example recommendation system [10] for the lo-
cation and selection phases, and standard Eclipse IDE tools
and the Jigsaw small-scale integration tool [1] for the inte-
gration phase. Drawing on scenarios described in the lit-
erature that are representative of real example reuse tasks,
we investigate the costs and challenges associated with the
end-to-end process.

2. Related Work
Various researchers have split reuse tasks into phases
(e.g., [12, 5, 3]); while minor variations exist, the basic no-
tions of location, selection, and integration are common to
all. Frakes and Fox [6] further divide the three phases into
seven conditions; they heavily emphasize that failure of any
of their conditions can lead to failure for the reuse task—
thus, rough transitions between the phases is liable to be an
impediment to success. Regardless of the choice of catego-
rization, these are the technical barriers that must be over-
come for a reuse task to be successful. Despite widespread
attention to the phases involved, no work has addressed

1http://google.com/codesearch



whether support for all of them was simultaneously needed
and none has attempted to provide end-to-end support.

The reuse of source code examples is a form of white-
box reuse, that has also been described as pragmatic
reuse [8]. Various web-based code search engines—like
Krugle, Koders, and Google Code Search (GCS)—focus
mainly on locating examples without regards to the de-
veloper’s context. Holmes et al. [10] overview more so-
phisticated example location systems until 2006 and how
their Strathcona system improves upon them; we do not go
into further details here. In contrast to example location,
Prospector [11], XSnippet [14], and PARSEWeb [16] help
developers learn how to use an API by determining possible
paths (by computation and/or repository mining) through an
API; these approaches are limited to relatively simple call
chain problems, in contrast with example locators. Both
example locators and call chain recommenders offer little
support for the selection phase and none for integration.

Holmes and Walker [8] describe how medium- to large-
scale pragmatic reuse tasks are valuable but were poorly
supported prior to their Gilligan tool. At those scales, the
overhead involved in the planning process used by Gilligan
is amortized, leading to significant savings. At the smaller-
scale involved in the end-to-end use of source code exam-
ples, this overhead is likely to overwhelm any savings.

The Jigsaw [1] system can integrate a method (example)
into another context (target system) by considering struc-
tural and semantic similarity measures between the exam-
ple and target context. Source elements from the original
context that do not correspond with those in the target, are
automatically copied and transformed to fit into the target;
this approach can reduce the amount of manual intervention
required to integrate a reused example. Cottrell et al. [1] de-
scribe how approaches previous to Jigsaw do not suffice for
the pragmatic integration of source code examples; we do
not repeat the details here. Unfortunately, Jigsaw provides
no support for the location or selection phases.

3. Case Studies
We conducted case studies that considered end-to-end reuse
tasks including locating, selecting, and integrating exam-
ples for specific tasks. Four scenarios were selected from
the published literature on source code examples. The sce-
narios were chosen to possess some complexity and to dis-
play some variety in terms of their domain and attributes.
Due to space restrictions, the detailed performance of the
case studies and the quantitative results have been placed in
a separate appendix [7].

3.1. Method

Four scenarios were used in our case studies, one each
from the publications on Strathcona [10] (Scenario 1: Com-

pute the signature of a MethodDeclaration), XSnip-
pet [14] (Scenario 2: Create an ICompilationUnit),
PARSEWeb [16] (Scenario 3: Access a text selection), and
XFinder [2] (Scenario 4: Create a TableModel). For each
scenario, we constructed a code skeleton based on the orig-
inal article’s description, to represent the point at which the
developer required assistance from an example. We used
both Google Code Search (GCS) and the Strathcona exam-
ple recommendation system [10] to locate potential exam-
ples and to aid in selecting examples for integration. Inte-
gration was performed both “manually” via standard IDE
tools, and via the Jigsaw small-scale reuse system [1].

Locating and selecting examples. We queried GCS us-
ing a string manually extracted from the code skeleton; we
investigated the returned examples by scanning through the
returned source files. Strathcona was queried by selecting
the skeleton and invoking a Strathcona search; we investi-
gated these results by considering the UML representation
of the example first before investigating the source code di-
rectly. We only analyzed the first five returned examples
from each location approach; this limit was chosen because
some empirical evidence indicates that developers rarely
look beyond this limit when searching [15].

Integrating potentially relevant examples. For each ex-
ample deemed relevant to the task using either location ap-
proach, we attempted to integrate the example into our code
skeleton. For the integration phase, we independently used
the standard tools available in the Eclipse IDE (“manual”
approach) and the Jigsaw tool [1].

Manual integration involved copying the relevant code
from the example, pasting it into our code skeleton, and
modifying it to resolve compilation errors and so it would
work in our environment. Jigsaw integration involved se-
lecting the originating source method that the developer
wanted to reuse and selecting the target method in the code
skeleton; this activated Jigsaw which subsequently copied
the required code to our system and modified it to compile
within our system.

To quantitatively compare the integration approaches,
we record the time required to perform the task (and the
time required to setup Jigsaw, where applicable), the lines
of code (LOC) ultimately reused from the example, and the
number of discrete actions required of the developer to per-
form the task. These results are reported in the appendix [7].

We use “actions” in this context as an effort indicator that
is alternative to time. We counted any specific decision a
developer made as an action; for example, if the developer
decided to remove a certain method, deleting the method
and all calls to it counted as a single action. Copying a
method and resolving any dangling dependencies counted
as a single action. Any unique modification to the source
code counted as an action.



3.2. Observations and Analysis
While performing the case studies we investigated 40 ex-
amples and attempted to integrate the most promising 14 of
these. From this experience we made a number of observa-
tions about the process of locating, selecting, and integrat-
ing these types of examples.

Classifying examples. The four scenarios we undertook
were derived from the related literature, but in perform-
ing these tasks we observed that they fell into two cate-
gories. Scenario 2 involved what have been termed call
chains, object instantiations [14], and method invocation
sequences [16]; these involve short snippets of code that
usually demonstrate how to access some functionality in an
API. Conversely, feature-oriented scenarios require richer
functionality; these are demonstrated in Scenarios 1, 3,
and 4. In Scenario 2 we noticed that relevant call chain
examples were easier to identify, occurred more frequently
because their scope was broad (the same call chain can be
used by examples of very different functionality), and were
easy to integrate manually as the significant parts were gen-
erally short. Deciding that an example was relevant to a
feature-oriented scenario was more difficult: more signifi-
cant functionality is required from them and they are gener-
ally larger and more specific.

Location approach shortcomings. GCS sorts examples
relative to the query terms that are sent to it, and performs
lexical matching within entire files, selecting files where
parts of identifiers and comments match the terms; Strath-
cona ranks examples according to the structural heuristics
that are matched on the server. Neither location approach,
or any we are aware of, can rank examples in the order
that would be most conducive to the developer being able
to reuse the example.

Manual integration shortcomings. We observed two
main shortcomings of manual integration tasks. First, it
was not easy to tell, through manual inspection, what de-
pendencies the example code might have on the rest of its
class or the system from which it was extracted. (This is
consistent with an earlier study that found that developers
often fail to identify source code dependencies using source
code editors [9].) Second and more intrusive, the example’s
context was often different from our code skeleton: fields,
local variables, and methods often had to be renamed. For
small examples this was straightforward but for larger ex-
amples we had to be careful that we were not breaking how
the code worked by modifying it.

Jigsaw integration shortcomings. Configuring an exam-
ple so it could be integrated by Jigsaw often took more time
than the actual integration; beyond our controlled environ-
ment, it is thus unlikely that Jigsaw would be used in end-
to-end example reuse tasks.

3.3. Summary

We found that locating, selecting, and integrating source
code examples with existing tool support is approachable
but generally cumbersome and slower than necessary. This
burden led to situations where we feel that after spend-
ing time to integrate one example we would be unlikely to
spend more trying to integrate alternatives—in a realistic
development setting, at least.

We found 5 significant issues with using these exist-
ing approaches as end-to-end support for reusing examples:
(1) example repositories that do not contain examples rel-
evant to a scenario are obviously not helpful to that sce-
nario, but such a failing can easily occur if the repository
maintenance is not automatic; (2) location techniques have
to consider syntax and semantics to locate better examples
for reuse; (3) located examples should be ordered relative
to ease of integration with the developer’s context; (4) over-
head for moving examples into the developer’s environment
and resolving trivial issues has to be reduced or eliminated;
and (5) the form of integration needs to consider factors
such as: avoiding the alteration of APIs; and iterative is-
sues from copying yet more code to eliminate dangling ref-
erences.

4. Discussion
A naive response to the need for end-to-end support for ex-
ample reuse tasks would be to take a couple of the exist-
ing approaches and combine them through a bit of engi-
neering. Unfortunately, tools that consider only individual
phases of these tasks are not merely incomplete with respect
to the end-to-end tasks, but can actively conflict in signifi-
cant ways, even though they are helpful for the phases of
the task they were designed to support.

How can the issues be overcome? More work should be
put into the selection phase to increase the chances of in-
vestigating the best integration candidate first. This could
be achieved either through altering Strathcona to introduce
one or more new heuristics [10, Section IV-C] and possibly
to remove others, or by analyzing the examples returned
by Strathcona and reordering them according to alternative
heuristics. The latter option has the advantage of not alter-
ing Strathcona but the disadvantage that it cannot so easily
add additional examples ignored by Strathcona (if any such
exist).

The process of integration should be better automated
and more oriented towards the end-to-end task so that de-
velopers can more readily try multiple candidate examples
to find the one that best meets their needs. This experimen-
tation is crucial to let developers see how an example works
within their code, rather than expending more effort in the
selection phase choosing the “right” example [4].



Are the case studies biased and lacking in statistical
significance? Our investigation simply provides evidence
that the end-to-end use of source code examples could be
improved; it does not show that no combination of tools
could not do better than what we tried. The goal of this ex-
ploratory investigation was to gain insight into the require-
ments of the end-to-end approach.

What is gained by providing end-to-end support? End-
to-end support enables the developer to more quickly inves-
tigate potentially relevant examples, allowing them the pos-
sibility to use the time savings to investigate more examples
and perhaps to discover better functionality or issues that
were not otherwise apparent (like error cases). The funda-
mental difference between call chain scenarios and feature-
provision scenarios is the richness involved: the more com-
plex but non-standard the functionality, the more likely the
need for in-depth investigation of multiple examples. Ignor-
ing the details often leads to making mistakes in the details.

5. Conclusion
End-to-end example reuse tasks involve three phases: loca-
tion, selection, and integration; with iteration as necessary.
No single, existing approach covers all three phases, so we
have explored combinations of approaches to provide end-
to-end support. We have presented the results from case
studies involving four scenarios gleaned from the literature,
and have shown that a simple combination of existing ap-
proaches does not suffice.

Overall, we identified three key points. (1) Perform-
ing the end-to-end tasks via a hodgepodge of tools inhibits
the developer’s ability to succeed at non-trivial small-scale
reuse tasks. (2) Example use tasks fall into two distinct
kinds, call chain problems that cause few difficulties and
feature-oriented scenarios that are far more demanding on
the developer—differing tool support needs accrue from
each kind. (3) Improving total task performance enables
developers to investigate more examples in greater depth,
thereby enabling them to experiment with different reuse
candidates to identify the best one for their task (rather than
guess which is best based on superficial appearances).

Without explicit tool support for the complete end-to-
end task, the developer can waste a lot of time and energy
on investigating and attempting to integrate examples that
ultimately fail to be appropriate; as a result, the overhead
required can restrict a developer’s willingness to investigate
multiple examples to find the “best” example for their situ-
ation. Reduced quality of the resulting system would ensue.

6. Acknowledgments
This work was supported in part by a Discovery Grant and
a Postdoctoral Fellowship from the Natural Sciences and
Engineering Research Council of Canada.

References
[1] R. Cottrell, R. J. Walker, and J. Denzinger. Semi-automating

small-scale source code reuse via structural correspondence.
In Proc. ACM SIGSOFT Int’l Symp. Foundations Softw.
Eng., pp. 214–225, 2008.

[2] B. Dagenais and H. Ossher. Automatically locating frame-
work extension examples. In Proc. ACM SIGSOFT Int’l
Symp. Foundations Softw. Eng., pp. 203–213, 2008.

[3] L. Dusink and J. van Katwijk. Reuse dimensions. In Proc.
ACM Symp. Softw. Reusabil., pp. 137–149, 1995.

[4] G. Fischer. Cognitive view of reuse and redesign. IEEE
Softw., 4(3):60–72, 1987.

[5] G. Fischer, S. Henninger, and D. Redmiles. Cognitive tools
for locating and comprehending software objects for reuse.
In Proc. Int’l Conf. Softw. Eng., pp. 318–328, 1991.

[6] W. B. Frakes and C. J. Fox. Quality improvement using
a software reuse failure modes model. IEEE Trans. Softw.
Eng., 22(4):274–279, 1996.

[7] R. Holmes, R. Cottrell, R. J. Walker, and J. Denzinger. The
end-to-end use of source code examples: An exploratory
study—Appendices. Tech. rep. 2009-934-13, Department
of Computer Science, University of Calgary, June 2009.
http://dx.doi.org/1880/47297.

[8] R. Holmes and R. J. Walker. Supporting the investigation
and planning of pragmatic reuse tasks. In Proc. Intl Conf.
Softw. Eng., pp. 447–457, 2007.

[9] R. Holmes and R. J. Walker. Task-specific source code de-
pendency investigation. In Proc. IEEE Int’l Wkshp. Visual-
izing Softw. Underst. Analys., pp. 100–107, 2007.

[10] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate
structural context matching: An approach to recommend rel-
evant examples. IEEE Trans. Softw. Eng., 32(12):952–970,
2006.

[11] D. Mandelin, L. Xu, R. Bodı́k, and D. Kimelman. Jun-
gloid mining: Helping to navigate the API jungle. In Proc.
ACM Conf. Obj.-Oriented Progr. Syst. Lang. Appl., pp. 48–
61, 2005.

[12] D. Mcilroy. Mass-produced software components. In Soft-
ware Engineering: Report on a Conference by the NATO
Science Committee, pp. 138–155, 1968.

[13] M. B. Rosson and J. M. Carroll. The reuse of uses in
Smalltalk programming. ACM Trans. Computer–Human In-
teraction, 3(3):219–253, 1996.

[14] N. Sahavechaphan and K. Claypool. XSnippet: Mining for
sample code. In Proc. ACM Conf. Obj.-Oriented Progr. Syst.
Lang. Appl., pp. 413–430, 2006.

[15] J. Starke, C. Luce, and J. Sillito. Working with search re-
sults. In Proc. ICSE Wkshp. Search-Driven Dev.: Users In-
frastr. Tools Eval., 2009. To appear.

[16] S. Thummalapenta and T. Xie. PARSEWeb: A program-
mer assistant for reusing open source code on the web. In
Proc. IEEE/ACM Int’l Conf. Autom. Softw. Eng., pp. 204–
213, 2007.


