Integrating Software Project Resources
Using Source Code Identifiers

Laura Inozemtseva, Siddharth Subramanian and Reid Holmes
University of Waterloo
_ Waterloo, ON, Canada
Iminozem,s23subra,rtholmes@uwaterloo.ca

ABSTRACT

Source code identifiers such as classes, methods, and fields
appear in many different contexts. For instance, a developer
performing a task using the android.app.Activity class
could consult various project resources including the class’s
source file, API documentation, issue tracker, mailing list
discussions, code reviews, or questions on Stack Overflow.

These information sources are logically connected by the
source code elements they describe, but are generally decou-
pled from each other. This has historically been tolerated
by developers, since there was no obvious way to easily nav-
igate between the data sources. However, it is now common
for these sources to have web-based front ends that provide
a standard mechanism (the browser) for viewing and inter-
acting with the data they contain. Augmenting these front
ends with hyperlinks and search would make development
easier by allowing developers to quickly navigate between
disparate sources of information about the same code ele-
ment.

In this paper, we propose a method of automatically link-
ing disparate information repositories with an emphasis on
high precision. We also propose a method of augment-
ing web-based front ends with these links to make it easier
for developers to quickly gain a comprehensive view of the
source code elements they are investigating. Research chal-
lenges include identifying source code tokens in the midst of
natural language text and incomplete code fragments, dy-
namically augmenting the web views of the data repositories,
and supporting novel composition of the link data to provide
comprehensive views for specific source code elements.

Categories and Subject Descriptors

D.2.6 [Software Engineering]: Programming Environments

General Terms

Human Factors

Keywords

Traceability, semantic links, Newton

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the author/owner(s). Publication rights licensed to ACM.
ICSE Companion’14, May 31 — June 7, 2014, Hyderabad, India

ACM 978-1-4503-2768-8/14/05
http://dx.doi.org/10.1145/2591062.2591108

400

1. INTRODUCTION

An Android developer performing a task might consult
the source code for a class on github.com, its API doc-
umentation on developer.android.com, its discussions on
groups.google.com, its code reviews on android-review.
googlesource.com, its issues on code.google.com, and re-
lated development questions on stackoverflow.com. Unfor-
tunately, each of these resources is independent: there is no
easy way to navigate directly between the repositories, nor
is it possible to combine the data they contain.

The disconnect between these data silos makes it more dif-
ficult for developers to build an understanding of the source
code elements that are relevant to their development task.
Since developers spend a considerable amount of time nav-
igating through these web-based resources [8] and reading
and navigating source code [10], the effects of small barriers
to understanding and “microinterruptions” as they move be-
tween data silos are magnified. Section 2 describes several
motivational scenarios that make this problem more con-
crete.

Previous work has attempted to solve this problem by
identifying traceability links between different project arte-
facts. However, most previous work cannot identify ref-
erences to source code elements in natural language text
with high precision. Moreover, existing systems often can-
not uniquely identify the code elements they find, making it
impossible to do high precision linking. Section 3 describes
how our work differs from previous projects in more detail.
It also describes our previous work in this area [12].

Our goal is to find references to source code identifiers in
structured and unstructured text with high precision, allow-
ing us to find semantic links between artefacts that discuss
the same code element and are thus immediately relevant to
one another. We will augment existing web front ends with
links to related resources, harnessing the power of hyperlink-
ing without requiring the data silos to change. This will be
done through HTML injection and dynamic page augmen-
tation. We will also use semantic link data to support code
search and to build composite pages for source code elements
that describe the diverse set of repositories involved in the
evolution of an element. Section 4 describes our proposed
tool, NEWTON.

Concretely, our new idea is as follows: using source code
identifiers to integrate disparate data silos will permit easy
navigation between these silos, supporting program compre-
hension and development tasks.



2. MOTIVATING SCENARIOS

To illustrate the many ways that semantic links between
project artefacts would be useful, we provide the following
three motivating scenarios.

e Code review is typically facilitated with online sys-
tems. In these systems, developers are presented with
a diff-style view of the change being made. In one such
diff, an extra parameter was added to the WifiConfig-
Controller constructor.! Existing approaches would
not link the WifiConfigController reference to either
its documentation or its source code?. In contrast,
NEWTON could identify these links, enabling the devel-
oper to easily navigate to these resources if they needed
more contextual information for their task. NEWTON
would also make it possible to click on the call to
the WifiConfigController constructor in the code re-
view system and see all code reviews pertinent to this
method.

Developers frequently use mailing lists to discuss fea-
ture changes and coordinate their activities. These
technical discussions often include source code frag-
ments and reference various APIs. For example, on one
thread of the Blink mailing list, developers discussed
two different v8: :Context methods.® By linking this
message thread to the two API methods, developers
reading the thread could easily navigate to the relevant
source code and documentation. The documentation
could also be augmented with links to the mailing list,
since the discussion on the list provides valuable in-
sight into these methods.

Stack Overflow posts often contain many source code
fragments. For example, one answer explains how to
reset an Android Chronometer.* Unfortunately, mChro-
nometer is not declared in the snippet, making it im-
possible for existing approaches to link the example to
the Chronometer class. If a developer reading this snip-
pet were interested in the official documentation, they
would have to infer the link to Chronometer and initi-
ate a new search to find the documentation. NEWTON
would provide one-click access from the Stack Overflow
post to the documentation and vice-versa.

The scenarios described above represent common devel-
opment tasks. In each case, developers would benefit from
being able to navigate from the source code to a reference to
that code in a repository, from the repository to the source
code, and between relevant repository results in order to
build a full understanding of the element under investiga-
tion.

3. RELATED WORK

Several previous studies have tackled the problem of trace-
ability between multiple repositories. However, they suffer
from one of two weaknesses: either they cannot handle nat-
ural language documents, such as emails and forum posts, or
they cannot uniquely identify the code elements they find,
reducing the precision of the identified links. Both weak-
nesses would greatly reduce the usefulness of our proposed
tool.

!The example can be found at http://goo.gl/vDX15u
2Found at http://goo.gl/qUUnVd
3http://goo.gl/NEGuLe
‘http://stackoverflow.com/a/5345994

401

As an example, Fritz and Murphy [6] combine information
from multiple repositories to answer developers’ questions.
However, they rely on the items in the repositories having
unique identifiers that can be easily extracted (e.g. a commit
id) and cannot process natural language documents.

Dagenais and Hendren [4] performed partial type inference
for Java code but their approach requires a complete source
code file as input. It cannot handle natural language text.

Hipikat [3] recommends artefacts from a project’s history
that might be relevant to the current development task.
However, it does not consider the source code of the project,
so it cannot be used for the kind of linking we want to do.

Venolia’s tool [13] identifies allusions to software artefacts
in natural language prose. However, it accomplishes this
through simple regular expressions, reducing recall, and can
only obtain the fully qualified name of an element if the de-
veloper writes out the full name, e.g. android.app.Activity.

Bacchelli et al. [1] attempted to establish links between
emails and the source code artefacts they discuss. They
tried to identify source code elements in the emails using
regular expressions, a vector space model and latent seman-
tic analysis. However, all three approaches had very low
precision and could not identify fully qualified names.

CodeBook [2] supports a large variety of different reposi-
tories, but uses regular expressions to look for references to
source code elements in natural language text.

Similarily, RecoDoc [5] supports a variety of different repos-
itories but uses Bacchelli et al.’s approach to look for refer-
ences to source code elements.

Panichella et al. [7] tried to automatically extract method
descriptions from developer communications such as emails
and bug trackers. However, they are only able to map a
communication to a class when the fully-qualified name or
the filename is given.

ACE [9] uses an island grammar to identify elements,
which leads to increased precision but again cannot retrieve
the fully qualified name.

It is clear that our tool, to be successful, must be able to
identify references to source code elements in natural lan-
guage text and resolve those references to the fully qualified
name of the element. As we will discuss in the next section,
we previously developed a tool that is capable of doing the
latter [11, 12]. However, it is currently limited to structured
text, specifically, the <code> blocks of Stack Overflow posts.
Our primary research goal is therefore to make the tool more
general by adding the ability to parse natural language doc-
uments. Our preliminary results with conditional random
field models are promising.

4. SURFACING SEMANTIC LINKS
Our approach consists of three steps:

Structural element identification. First, a list of source
code identifiers must be generated for a project of in-
terest. These can generally be extracted from readily
accessible project resources, such as jar files for Java
or JS files for JavaScript.

Semantic link detection. Next, project silos are exam-
ined using standard web spider techniques. The text
on the identified pages is compared to the structural
names to identify relevant links. Natural language pro-
cessing techniques are required to identify source code
tokens in unstructured text.



Data display. Finally, identified links can be used to inject
relevant content into HTML pages as developers nav-
igate through online resources. Composite pages can
also be generated for all structural identifiers enabling
developers to gain a complete understanding of a given
element.

Our initial prototypes [11, 12] have focused on the first
two of these three steps. We will describe each step in more
detail in the following sections.

4.1 Structural Element Identification

The list of structural elements acts as an oracle to guide
the semantic link detection process. Generating the list of
identifiers is generally straightforward for interpreted lan-
guages and languages that are compiled to bytecode. Our
prototype, BAKER [12],can automatically generate identifier
lists for Java (from jar files) and for JavaScript (from the
source). Any fully-qualified name that can be referenced in
source code is extracted.

A global identifier set is maintained in addition to project-
specific identifiers. For example, if one is identifying seman-
tic links in StackOverflow, the global list must be used as
API calls from a variety of projects may be present. How-
ever, when identifying semantic links for a specific project
repository (e.g., https://android-review.googlesource.
com), only the identifiers expected to be present in that
repository need be used. While past approaches have ar-
gued that the closed world hypothesis is invalid [9], for any
specific project it is not unreasonable to expect that a list
of structural identifiers for the project can be generated.

4.2 Semantic Link Detection

To identify semantic links, we must identify code-like to-
kens in both structured and unstructured text. Structured
text includes, for example, the <code> blocks in Stack Over-
flow posts, which are known to contain source code. Un-
structured text includes, for example, email threads that re-
fer to the Activity class without ever explicitly indicating
that a code element is being discussed.

BAKER is able to correctly determine the fully-qualified
identifier of a source code token in Stack Overflow <code>
blocks with 96% precision [11, 12]. The tool currently works
for Java and JavaScript. The mapping step relies on two
oracles containing 20 million fully qualified names that were
automatically built from the Maven repository (for the Java
oracle) and a large set of non-obfuscated JavaScript files (for
the JavaScript oracle). While the detailed operation of the
tool will not be repeated here, it is worth mentioning that
parsing source code snippets is imprecise because the snip-
pets are generally not valid code. For example, imported
code is generally not available, variables are often used with-
out being defined, and parts of the code may be elided (var
...). In addition, identifying fully-qualified names is dif-
ficult due to frequent naming collisions; for example, there
are 58 methods with the short name addHistoryListener in
the Maven repository. Finally, some languages make identi-
fying API references challenging. In JavaScript, some data
flow analyses are required along with control flow analyses
to identify semantic links with high precision.

BAKER achieves its high precision in spite of these issues
by flexibly querying the oracle for types, methods, and fields
that match the constraints given in code snippets. For ex-
ample, while 58 types have addHistoryListener methods,

402

only one type also has a getToken method. This deductive
approach allows us to identify the fully qualified names of
many tokens even when we are only provided with a short
name as input.

While BAKER demonstrates that our deductive approach
can work effectively for both object-oriented and dynamic
languages, to fully realize the vision of this project, NEW-
TON must have the additional ability to extract code-like to-
kens from unstructured text. We have tried using supervised
machine learning to learn the parameters of a conditional
random field model given a document corpus. Our results,
while very preliminary, are promising: we have managed to
obtain fairly high precision (0.77). That said, there is still
much room for improvement. This will be the first step we
take to continue this project.

4.3 Data Display

BAKER demonstrates that it is possible to create seman-
tic links based on source code identifiers and code-like terms
with relatively high precision. The most exciting aspect of
this project is using these links to improve the development
experience. We envision two primary ways of seamlessly
integrating this information into the systems developers al-
ready use.

Dynamic page injection.

The simplest form of integration would employ a browser
extension to dynamically augment any web page contain-
ing source code references with links back to the structural
identifiers they contain.

The naming hierarchy followed by API elements is usually
maintained in the URLs of the web-based front ends that
host related resources. For instance, the API documenta-
tion for the BaseInterval class in the org. joda.time.base
package of the JodaTime library is located at joda-time.
sourceforge.net/api-docs/org/joda/time/base/BaseIn-
terval.html.

Since we have access to a complete list of the fully qual-
ified names of the elements in a library, we can build a set
of curated web searches, each targeted to locate one web-
based resource, and identify the top 10 returned URLs per
query that maintain the naming hierarchy. The base URL
for each web-based resource associated with a library can be
extracted by identifying the the longest common prefix in
the returned URLs over all API elements in the library. Un-
interesting resources including code browsing websites like
Grepcode® that often show up in the search results can be
discarded by maintaining a blacklist of domain names.

Since BAKER (and thus NEWTON) can identify fully quali-
fied names, it is straightforward to generate and inject links
to various resources accordingly. For example, Figure 1
shows how NEWTON could augment part of a patch in a
code review system. When the developer hovers over get-
SystemService, they would see links other resources that
refer to this method.

The hyperlinking already present in IDEs to navigate be-
tween structural code elements could also be augmented
with this data, enabling direct linking to web-based resources
from within the source code. This latter feature would rely
on the IDE’s AST to identify which tokens should be aug-
mented.

Swww. grepcode.com



activity.getSystemService(INPUT SERVICE);

i
android.content.Context.getSystemService(String)

Q) Github [@Javadoc ' ;3 Reviews (6) ' Newton

Figure 1: Example of page injection into an online
code review snippet. The hyperlink on getSystem-
Service is dynamically injected into the web page;
when the developer hovers over the link the fully
qualified method name is shown along with links to
other relevant repositories.

References to android.widget.Chronometer

Core Details:
Javadoc [developer.android.com]

Source Code [github.com]
3 Stack Overflow posts involve Chronometer

=)

33 Chronometer occurs in 12 code reviews
2 |

PY )
o0

Chronometer is referenced by 6 issues
Chronometer.java has been changed 42 times

5 other types are called Chronometer

Figure 2: An example of a composite view that
could be presented in response to a search for an-
droid.widget.Chronometer.

Composite pages.

By combining the semantic link data for a specific source
code identifier from many different artefact repositories, a
composite element page can be dynamically generated. This
page could either be standalone, much like a Javadoc page,
or could be presented in the form of a widget embedded in
some other context. For example, Figure 2 shows a faceted
search view that could be presented at the top of a source
code search query, much as Google search offers unit conver-
sions or other augmented data. This same view could also
be embedded within an IDE to be displayed whenever a de-
veloper hovers over an API call. Composite pages could be
built that incorporate vast amounts of detail about a source
code element. For instance, such a page could include snip-
pets from the documentation, details about all of the times
the element has been changed in the version control repos-
itory, active and past code reviews for identifying design
rationale, related issues, and a collection of code examples
from Stack Overflow that demonstrate the use of the API.

5. CONCLUSION

Many development tasks affect resources that are not co-
located with the code. These resources, such as documenta-
tion, mailing lists, issue trackers, and version control repos-
itories, among others, are stored in separate silos; how-
ever, they are conceptually linked by the source code ele-
ments they contain. Since these resources are often accessed
through web-based interfaces, we can expose the conceptual
links between resources by identifying structural identifiers
in the text stored within the resources and augmenting their
web interfaces with this information.

In this paper we proposed NEWTON, a platform that will
use this linking approach on a variety of web-based devel-

403

opment repositories to increase the accessibility of the infor-
mation in these repositories. By unobtrusively augmenting
the systems developers are already using, we hope to assist
them with their day-to-day programming tasks.

6. REFERENCES

[1] A. Bacchelli, M. Lanza, and R. Robbes. Linking
e-mails and source code artifacts. In Proceedings of the
International Conference on Software Engineering,
2010.
A. Begel, Y. P. Khoo, and T. Zimmermann.
Codebook: Discovering and exploiting relationships in
software repositories. In Proceedings of the
International Conference on Software Engineering,
pages 125-134, 2010.
D. Cubranic, G. C. Murphy, J. Singer, and K. S.
Booth. Hipikat: A project memory for software
development. Transactions on Software Engineering,
31(6):446-465, 2005.
B. Dagenais and L. Hendren. Enabling static analysis
for partial Java programs. In Proceedings of the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA),
pages 313-328, 2008.
B. Dagenais and M. P. Robillard. Recovering
traceability links between an APT and its learning
resources. In Proceedings of the International
Conference on Software Engineering, 2012.
T. Fritz and G. C. Murphy. Using information
fragments to answer the questions developers ask. In
Proceedings of the International Conference on
Software Engineering, 2010.
S. Panichella, J. Aponte, M. Di Penta, A. Marcus, and
G. Canfora. Mining source code descriptions from
developer communications. In Proceedings of the
International Conference on Program Comprehension,
2012.
C. Parnin, C. Treude, L. Grammel, and M.-A. D.
Storey. Crowd documentation: Exploring the coverage
and the dynamics of API discussions on Stack
Overflow. Technical Report GIT-CS-12-05, Georgia
Tech, 2012.
P. C. Rigby and M. P. Robillard. Discovering essential
code elements in informal documentation. In
Proceedings of the International Conference on
Software Engineering, pages 832—841, 2013.
M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An
exploratory study. Transactions on Software
Engineering, 30(12):889-903, 2004.
S. Subramanian and R. Holmes. Making sense of
online code snippets. In Proceedings of the Working
Conference on Mining Software Repositories, pages
85-88, 2013.
S. Subramanian, L. Inozemtseva, and R. Holmes. Live
API documentation. In Proceedings of the
International Conference on Software Engineering,
2014.
G. Venolia. Textual allusions to artifacts in
software-related repositories. In Proceedings of the
International Workshop on Mining Software
Repositories, pages 151-154, 2006.

3]

[9]

[10]

[11]

[12]

[13]



