
DASHboards: Enhancing Developer
Situational Awareness

Oleksii Kononenko, Olga Baysal, Reid Holmes, and Michael W. Godfrey
David R. Cheriton School of Computer Science
University of Waterloo, Waterloo, ON, Canada

{okononen, obaysal, rtholmes, migod}@uwaterloo.ca

ABSTRACT
Issue trackers monitor the progress of software development
“issues”, such as bug fixes and discussions about features.
Typically, developers subscribe to issues they are interested
in through the tracker, and are informed of changes and new
developments via automated email. In practice, however,
this approach does not scale well, as developers may receive
large volumes of messages that they must sort through using
their mail client; over time, it becomes increasingly challeng-
ing for them to maintain awareness of the issues that are rel-
evant to their activities and tasks. To address this problem,
we present a tool called called DASH that is implemented in
the form of personalized views of issues; developers indicate
issues of interest and DASH presents customized views of
their progress and informs them of changes as they occur.

Video: http://youtu.be/Jka_MsZet20

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming En-
vironments

General Terms
Design, Human Factors

Keywords
Developer dashboards, Bugzilla, Elasticsearch, situational
awareness

1. INTRODUCTION AND BACKGROUND
Issue trackers play a central role in software development;

they are used for a number of collaborative project-related
activities, such as reporting and fixing bugs, discussing how
outstanding concerns might be resolved, and reviewing pro-
posed patches. Bugzilla is a well-known issue tracking tool
that is used by a number of projects, including Mozilla.
However, Mozilla developers have previously expressed con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14, May 31 – June 7, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2768-8/14/05 ...$15.00.

cerns that Bugzilla is slow and poorly designed to meet many
of their day-to-day needs [2].

Typically, developers who use Bugzilla keep abreast of
changes in their working environment in one of two ways:
they either write custom queries to run on Bugzilla, or they
create custom filters in their mail client to sort through the
deluge of email that Bugzilla typically sends them. Neither
of these is ideal: since the amount of information stored
in Bugzilla grows monotonically over time, the already-slow
searching mechanisms supported by Bugzilla become increas-
ingly overwhelmed. At the same time, the volume of email
that a typical Mozilla developer must be able to process
can approach 50 to 500 message per day; developers have
reported that it is increasingly hard to identify the truly
important information from this daily deluge [2].

In principle, many common questions that developers have
— such as Who is reviewing my patch? What patches are
pending reviews and do I need to ping someone? — can be
answered by querying the issue tracking system. In practice,
this is problematic: Bugzilla’s performance is often painfully
slow, and its query interface includes many fields that are
irrelevant much of the time while at the same time lacks the
expressiveness to form queries that developers seek answers
to. For example, developers often wish to know what has
changed in an issue since the last time they queried, or if
they are currently blocking progress in some issue. Such
information is challenging to get from Bugzilla since it re-
quires writing a complex request multiple times, e.g., for
every product a developer working on.

Our tool, DASH, aims to offer developers customized views
of issue tracking, and in so doing allow them to retain better
awareness of the key issues that are involved in. Its develop-
ment originated after conducting a qualitative study [1] on
the data collected by the Mozilla Anthropology project [2].
This project was started in late 2011 to explore how vari-
ous Mozilla community users make use of the Bugzilla issue
tracking system, and to gain a sense of how Bugzilla could be
improved in the future to better support the rapidly-growing
Mozilla community.

During this process, Martin Best of the Mozilla Corpo-
ration conducted 20 one-hour interviews with active devel-
opers from various Mozilla projects. These interviews in-
cluded developers’ insights on their interactions and expe-
rience with the Bugzilla issue tracking system. The main
goal of the Anthropology project was to identify trends that
could help locate key problem areas with issue management,
as well as best practices related to the use of Bugzilla.

Our qualitative analysis of the interviews revealed that

http://youtu.be/Jka_MsZet20

developers seek improved support for situational awareness
about issues they are involved with and the changes relevant
to their daily tasks such as fixing bugs, making patches,
conducting code review jobs and following up on the issues
of their interest [1].

2. AWARENESS SCENARIOS
We describe four scenarios to highlight key tasks Mozilla

developers perform every day in working on their projects.

Bug fixing — Developers need to know what issues have
been assigned to them, so they can track their work
items. Most developers start their day by determining
if any issues are currently pending on them to resolve:
“How many issues do I need to fix?” Another ques-
tion developers often ask is “What has changed since
yesterday?” Currently, Bugzilla can provide develop-
ers with a list of issues assigned to them, but cannot
provide insights into the context of the change.

Following up on issues — Developers sometimes wish to
track issues that they may not be working on directly;
they can do this by subscribing to the issue and by
participating in discussions.

Tracking patches — One of the main activities developers
are involved with is writing patches: code modifica-
tions that fix defects. Developers want to be able to
track their own patch activity, as well as determine
which other patches are awaiting reviews or who is
blocking their reviews.

Reviewing patches from others — Developers want to en-
sure that they are not blocking others needlessly, so
they want to be quick at reviewing patches from other
developers. They also want to be able to quickly assess
their own review loads: How many patches are pending
on me? Who am I blocking?

3. APPROACH
Mozilla developers can deal with these scenarios in sev-

eral ways: they can use Bugzilla’s built-in query mechanism;
however, this has poor performance and is also not well de-
signed for these tasks. They can use the bug email facility,
and manage the results with hand-designed filters in their
email clients; however, this is tedious, and important results
can get lost amid the volume of details. And they can create
an add-on tool, as we have done and will describe.

3.1 Bugzilla approach
While Bugzilla is widely used and deployed within many

organizations, it is designed to track the issues and their
changes. Since Bugzilla concentrates on issue tracking rather
than informing developers on how issues evolve during project
development, developers face challenges in keeping aware on
what is happening on the issues they are involved with.

Indeed, Bugzilla includes a web-based search engine that
allows users to construct a variety of queries on issues by
specifying a list of filters. However, creating a custom query
can be surprisingly time consuming as there are numerous
metadata fields that can add complexity. For example, to
answer the seemingly simple question “Which bugs are as-
signed to me?”, one needs to set six fields to appropriate
values. For the query related to code reviews on patches

“Which patches do I need to review?”, a developer would
need to use a custom search option and understand how
review flags are defined.

After the query is specified and executed, Bugzilla will re-
turn the list of issues relevant to the filters defined. While in
some cases the displayed list of issues will answer the ques-
tion reasonably (e.g., What issues are assigned to me?), in
other cases, the results of the query will not provide desired
information (e.g., How have the issues changed?) and addi-
tional mental effort is required to determine the context of
the issues displayed. Developers need to go through the list
manually and examine each issue in turn to figure out the
answers to the questions describes in the example scenarios
(Section 2). For example, if a developer wants to identify re-
cent changes to the issues assigned to her, she first needs to
receive results of a query, click on each issue in the list which
will open a history page for each issue, and then scroll down
to the bottom of the page to learn about recent changes.

Another challenge associated with the direct use of Bugzilla
is that developers need to create a new query for each ques-
tion they have, which means that they need to keep each
query open in a separate browser tab. Moreover, developers
need to spend time with each tab to process the results of
the query every time they re-run their queries in order for
them to get updates. These views and the time required to
stay informed on the changes can interrupt developers from
completing daily tasks.

3.2 DASH approach
We chose to focus the UI of DASH1 on usability, simplic-

ity, and speed. We built our tool as a website, which can
generate individualized views for each developer. The front
end of the tool consists of a “login page” and a dynamically
generated page that contains several views, with each view
presented on its own in-page tab. We wanted to limit the
number of steps a developer has to go through before she
sees the views, so the only information we ask to type in is
the email address of the developer and the time range for
queries. Queries for all views (except otherwise stated) load
only those items where the corresponding issue was modified
within the specified time range.

The example of a dashboard that a developer is presented
with is shown in the Figure 1. The dashboard displayed is
generated for mconley@mozilla.com on October 8, 2013 for
the last week period. DASH provides two views: on the left
we placed items related to bug fixing and tracking, and on
the right we display items related to patch making and code
review tasks. Next we briefly describe each view and the
information it contains.

3.2.1 Issues
The “Issues” view assist developers with keeping track of

“important” issues. Each tab here has three columns: issue
ID, its summary, and the time the issue was last modified.
Issues are ordered by the last touched values with the most
recent ones on top of the list. A tooltip appears when de-
velopers hover over an issue providing the information on
the context of last change (e.g., a new comment or an up-
dated review flag). This context of the recent action allows
developers better understand how the issue was changed to
make a decision on the next step. For example, developers
can prioritize issues depending on the recent action.

1http://claw.cs.uwaterloo.ca/~okononen/

http://claw.cs.uwaterloo.ca/~okononen/

Figure 1: The example of the DASHboard generated for mconley@mozilla.com.

The “Issues” view has four tabs: Activity, Assigned, Re-
ported, and CC, Comments. “Activity” tab displays all the
items that a developer is involved with. The second and
third tabs represent issues that are assigned to a developer
and issues that are reported by the developer respectively.
And finally, “CC, Comments” tab lists issues that a devel-
oper is following up or was involved in a discussion by leaving
comments.

3.2.2 Patches and Reviews
The main goal of the “Patches and Reviews” view is to

provide developers with the information about their patches
and review queues. The first tab “Patch Log” displays the
list of patches that are written by the developer and sub-
mitted for reviews. Tracking review flags and their updates
developers can determine whether her patch was reviewed
and, if so, what the outcome of the review is. Developer is
able to quickly learn who is blocking her patch and contact
that person if the patch was pending a review for a long
time.

The second tab “Reviews” displays patches that were re-
viewed or await review decisions from a developer. Patches
that are pending reviews are highlighted by changing the
background colour to prevent them from being forgotten.
Items that were already reviewed include the outcome of
the decision (review+ or review-).

While this view is helpful to the developers in staying
informed of the review assignments, it also lets developers
determine the best person to request a review from. For
example, if Alice created a patch and she knows that both
Bob and Tom are appropriate people to ask for a review,
she might want to choose the one who currently has lower
review loads, since she is likely to receive a faster response.
Thus, instead of requesting a review from both of them, she
can use DASH to get insights into Bob and Tom’s current
review queues by looking at the items in their“Review”tabs.

Similar to the “Issues” view, all items in “Patches and
Reviews” are ordered by the time of last touch and have
tooltips with the information about the context of the last
change.

4. IMPLEMENTATION DETAILS
We now provide technical details about the implementa-

tion of the DASH prototype and its current version.

4.1 Initial prototype
Our initial prototype was developed using Bugzilla’s REST

API (“BzAPI”)2. While the prototype looked similar to the
one shown in Figure 1, heavy loads of the requests on the
API server affected its performance. From the discussions
with the Mozilla developers we identified three main prob-
lems with the prototype:

1. the performance of our implementation was slow;
2. a user can run the tool only for one component at a

time; and
3. there were filtering issues based on “created on” field

instead of “modified on” (which caused some issues of
not being displayed).

4.2 Elasticsearch
The Bugzilla team acknowledged performance issues, and

they chose to adopt the Elasticsearch server3 for internal
use. The team also created software4 for exporting data
from Bugzilla into the Elasticsearch server. Developers from
the Mozilla office in Toronto told us about Elasticsearch, and
we decided to try it too.

Elasticsearch is a distributed open source server that al-
lows near real-time search [11]. Similar to the notion of
Database in a RBMS, Elasticsearch has a notion of Index.
The server is document oriented, meaning that each In-
dex on the server consists of the list of documents. In our
case, each document represents an issue with all information
about it (i.e., status, product, priority, attachments, etc.).
Every time a change is made to a document (e.g., a new
patch added), Elasticsearch automatically creates a new ver-
sion of the document. Although this increases the number

2https://wiki.mozilla.org/Bugzilla:REST_API
3http://www.elasticsearch.org/
4https://github.com/klahnakoski/Bugzilla-ETL

https://wiki.mozilla.org/Bugzilla:REST_API
http://www.elasticsearch.org/
https://github.com/klahnakoski/Bugzilla-ETL

of documents to be indexed, it also allows users to effort-
lessly see the history of all changes. By default, all fields in
the documents are indexed, which allows for a faster search.
Once we switched our backend to the Elasticsearch server,
we saw an enormous improvement in the execution time.

We use the software from Mozilla to populate the server.
This process is independent from our tool; we expect that
this software will be constantly running to keep the server
in sync with Bugzilla when the DASH is deployed for the
real-life use.

DASH itself is written in Python. The main module re-
ceives two arguments via an AJAX request: the email of a
developer and the time range. After that, DASH performs
several queries using the Elasticsearch server to get the data
required for each view. It processes the data from these
queries and creates a block of HTML code that will be re-
turned to the developer. Finally, on the developer’s side a
simple JavaScript code embeds the returned HTML into a
page.

4.2.1 Deployment
Because the Elasticsearch server plays a role of an inter-

mediary between the tool and Bugzilla, it is necessary that
it be kept up-to-date. During the development we loaded
quarterly updated public dumps of Bugzilla into our own
cluster as we did not have real-time data on the server. The
source code of DASH is made publicly available5. Mozilla
developers in Toronto are currently working on setting up
DASH along with the Elasticsearch server with real-time
data on their side.

5. RELATED WORK
Many researchers have addressed the problem of aware-

ness in software development [6–8, 10, 12, 13]. A number of
tools have been developed to support awareness in a collab-
orative work environment [3–5,9,14] with a majority of tools
focusing on source code information. FASTDash [3] offers
an interactive visualization of a shared source code to pro-
vide insight into activities aggregated at the level of files and
methods. Hipikat [5] provides assistance to new developers
on the project by recommending relevant artifacts (source
code, bug reports, emails) for a given task. The Bridge [14]
tool enables full-text search across multiple data sources in-
cluding source code, SCM repositories, bug report, feature
request, etc. Yoohoo [9] monitors changes across many dif-
ferent projects and creates a developer-specific notification
for any changes in the depend-upon projects that are likely
to impact their code. Similarly, Crystal [4] increases devel-
oper awareness of version control conflicts during collabora-
tive project development.

DASH was developed based on input from the industrial
developers to overcome current limitations of the Bugzilla is-
sue tracking system. The tool was qualitatively evaluated in
industry setting and is actively being maintained by adding
new features.

6. CONCLUSION
We have described DASH, a tool that provides developer-

specific custom views of issue tracking repository. DASH is
implemented as dynamic dashboards that filter and display
work items relevant to the working context of individual de-
velopers. Developers quickly learn if there are status changes
5https://github.com/okononen/dash

on the issues they are working with and all the data to sup-
port their key daily activities on software development and
maintenance. As a result, they can better manage the ex-
cess of information and stay more aware on the issues as the
project evolves.

7. REFERENCES
[1] O. Baysal, R. Holmes, and M. W. Godfrey. Situational

Awareness: Personalizing Issue Tracking Systems. In
Proc. of the New Ideas and Emerging Results (NIER)
Track, at ICSE, 2013.

[2] M. Best. The Bugzilla Anthropology.
https://wiki.mozilla.org/Bugzilla_Anthropology.

[3] J. T. Biehl, M. Czerwinski, G. Smith, and G. G.
Robertson. Fastdash: A visual dashboard for fostering
awareness in software teams. In Proc. of CHI, pages
1313–1322, 2007.

[4] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Crystal: Precise and unobtrusive conflict warnings. In
Proc. of ESEC-FSE Tool Demo, 2011.

[5] D. Cubranić and G. C. Murphy. Hipikat:
Recommending pertinent software development
artifacts. In Proc. of ICSE, pages 408–418, 2003.

[6] D. Damian, L. Izquierdo, J. Singer, and I. Kwan.
Awareness in the wild: Why communication
breakdowns occur. In Global Software Engineering,
2007. ICGSE 2007. Second IEEE International
Conference on, pages 81–90, 2007.

[7] R. DeLine, M. Czerwinski, B. Meyers, G. Venolia,
S. Drucker, and G. Robertson. Code thumbnails:
Using spatial memory to navigate source code. In
Proc. of the Visual Languages and Human-Centric
Computing, pages 11–18, 2006.

[8] J. D. Herbsleb and R. E. Grinter. Architectures,
coordination, and distance: Conway’s law and beyond.
IEEE Softw., 16(5):63–70, Sept. 1999.

[9] R. Holmes and R. J. Walker. Customized awareness:
Recommending relevant external change events. In
Proc. of ICSE, pages 465–474, 2010.

[10] C.-Y. Jang, C. Steinfield, and B. Pfaff. Virtual team
awareness and groupware support: an evaluation of
the teamscope system. Int. J. Hum.-Comput. Stud.,
56(1):109–126, Jan. 2002.

[11] O. Kononenko, O. Baysal, R. Holmes, and M. W.
Godfrey. Mining modern repositories with
elasticsearch. In Proc. of the 11th IEEE Working
Conference on Mining Software Repositories,
Hyderabad, India, May–June 2014.

[12] A. Sarma, Z. Noroozi, and A. van der Hoek. Palantir:
Raising awareness among configuration management
workspaces. In Proc. of the ACM/IEEE Intl. Conf. on
Software Engineering, pages 444–454, 2003.

[13] I. Steinmacher, A. P. Chaves, and M. A. Gerosa.
Awareness support in global software development: a
systematic review based on the 3c collaboration
model. In Proceedings of the 16th international
conference on Collaboration and technology, pages
185–201, Berlin, Heidelberg, 2010.

[14] G. Venolia. Textual allusions to artifacts in
software-related repositories. In Proc. of MSR, pages
151–154, 2006.

https://github.com/okononen/dash
https://wiki.mozilla.org/Bugzilla_Anthropology

	Introduction and Background
	Awareness Scenarios
	Approach
	Bugzilla approach
	DASH approach
	Issues
	Patches and Reviews

	Implementation Details
	Initial prototype
	Elasticsearch
	Deployment

	Related Work
	Conclusion
	References

