
Using Structural Context to Recommend Source Code
Examples

Reid Holmes and Gail C. Murphy
Department of Computer Science

University of British Columbia
2366 Main Mall

Vancouver BC Canada V6T 1Z4

rtholmes,murphy@cs.ubc.ca

ABSTRACT
When coding to a framework, developers often become
stuck, unsure of which class to subclass, which objects to
instantiate and which methods to call. Example code that
demonstrates the use of the framework can help developers
make progress on their task. In this paper, we describe an
approach for locating relevant code in an example reposi-
tory that is based on heuristically matching the structure
of the code under development to the example code. Our
tool improves on existing approaches in two ways. First,
the structural context needed to query the repository is ex-
tracted automatically from the code, freeing the developer
from learning a query language or from writing their code in
a particular style. Second, the repository can be generated
easily from existing applications. We demonstrate the util-
ity of this approach by reporting on a case study involving
two subjects completing four programming tasks within the
Eclipse integrated development environment framework.

Categories and Subject Descriptors
D.2.3 [Coding Tools and Techniques]: Program Edi-
tors; D.2.3 [Coding Tools and Techniques]: Object-
Oriented Programming; D.2.6 [Programming Environ-
ments]: Programmer Workbench

General Terms
Languages, Experimentation

Keywords
recommender, examples, software structure, development
environment framework

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05,May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

1. INTRODUCTION
Frameworks allow software developers to create full-

featured applications with less effort. Achieving this benefit
requires a developer to use the framework appropriately:
subclassing particular classes, instantiating appropriate ob-
jects, and calling methods according to established proto-
cols. Some of these constraints on framework use are de-
scribed in design or API documents; others are specified
through code examples crafted specifically to demonstrate
particular features of the framework. It is seldom the case
that the documentation and examples provided with a large
framework are sufficient for a developer to use the framework
effectively. All too often, developers become stuck when try-
ing to use the framework, unsure of how to make progress
on a programming task.

To help unstick developers caught in this situation, re-
searchers have advocated the establishment of example
repositories to house examples of a framework’s use (e.g. [10,
11, 14]). These approaches differ in the means that a devel-
oper uses to retrieve relevant examples from the repository;
developers must either learn a new query language [3], have
an idea of what type of example would likely help them with
their task [8], or write their source in a style that conforms to
that of the example repository [14]. All of these approaches
make it too hard for a developer to locate and incorporate
examples from the repository.

To ease the burden on the developer, we describe an ap-
proach that uses the structure of the code under develop-
ment to find relevant examples in a repository. Our ap-
proach has two advantages. First, the structural context
that is used to form a query is extracted automatically from
the code a developer is writing. A developer who wishes to
search the repository need only issue a search request, such
as through a keystroke, to find a list of related examples.
The developer need not learn a new query language, nor
must the developer code to particular standards to enable a
search to be conducted. Second, the repository of examples
is extracted automatically from existing applications that
use the framework. Specific work need not be performed to
craft the examples for the repository.

To investigate this approach, we built the Strathcona tool.
The client portion of this tool, a plug-in for the Eclipse inte-
grated development environment (IDE),1 extracts the struc-
tural context of the code on which a developer is working

1eclipse.org

when the developer requests examples. The server portion
of the tool houses the example repository and selects ex-
amples to be returned using a set of structural matching
heuristics. In our approach, an example is a subset of one
of the applications stored in the repository, consisting of a
set of relevant classes and relationships. The developer is
presented with a structural overview of each example using
a compact visual representation. The developer can access
a rationale for why the example has been returned, as well
as the source for the example.

In evaluating our approach, the key question of interest
was whether our structural matching heuristics can return
examples that a developer finds useful. As it is only possi-
ble to understand if an example is useful in the context of
a task, we performed a qualitative evaluation in which two
subjects replicated four cases; each case consisted of a pro-
gramming task related to writing plug-ins for Eclipse. We
chose Eclipse as the framework for evaluation because it is
a large framework with substantial example code available,
both in form of third-party plug-ins as well as the plug-in
code that collectively makes up the Eclipse system. For the
evaluation, the Strathcona repository was populated with
the Eclipse system code, because these plug-ins should be
good examples of the use of the framework. This code com-
prised approximately 1.5MLOC. In all but one instance in
which there were relevant examples in the repository, the
subjects in our study were able to access the relevant ex-
amples, understand them, and complete the programming
task. These results provide initial evidence that structural
matching is appropriate to deliver relevant examples to help
ease framework use.

We begin the paper with a scenario describing the tool’s
use (Section 2). Next, we compare our approach to other
efforts (Section 3), describe our approach and tool in detail
(Section 4), and present our evaluation (Section 5). We
conclude the paper with a discussion of open issues (Section
6) before summarizing (Section 7).

2. SAMPLE SCENARIO
The Eclipse user interface includes a status line that re-

ports information about the status of the environment to
the user. For example, when the user selects a number of
items from a tree view in Eclipse, the status line shows
the number of selected items. Consider a developer who
is writing an Eclipse plug-in and who wants to display a
message on the status line. The first place a developer
might look for help with this task is the Eclipse documen-
tation. Checking this resource, the developer finds a refer-
ence to an interface called IStatusLineManager. Looking
at the API documentation for IStatusLineManager, the de-
veloper finds the seemingly appropriately named method,
setMessage(String), but the documentation does not de-
scribe how to get a handle to a StatusLineManager object
needed to call this method. At this point, the developer be-
comes stuck as to what is the next step needed to complete
the task as there is no documentation available to help with
the next step to complete the task. This scenario occurred
during the development of the Strathcona plug-in.

Strathcona can help a developer in this situation.
The developer adds to an existing method in their
plug-in, named updateStatusBar(String), the statement

IStatusLineManager.setMessage(String).2 As shown in
the top portion of Figure 1(a), the developer then se-
lects Query Related from the context menu to request
similar examples from Strathcona. The client portion
of Strathcona generates a structural context of the code
the developer is writing that comprises details of the
method being written, updateStatusBar, and its con-
taining class CodeViewer. In this case, the context
also includes the call by updateStatusBar(String) to
IStatusLineManager.setMessage(String) and its fields
(SourceViewer, Action). This context is sent to the server
portion of Strathcona, which returns ten structurally-related
examples. Each of these examples consist of three parts: a
code snippet, a structural description of the code snippet,
and a rationale explaining the relevance of the code snippet
to the problem the developer is facing.

Figure 1(b) shows the structure of one of the re-
turned examples, which relates to the code for one
of the components within the Eclipse IDE. The ratio-
nale for this example describes that it was selected be-
cause the setMessage(String) method is being called,
IStatusLineManager is being used by the example, and the
example extends ViewPart (Figure 1(c)). The developer
requests the code for the example, and Strathcona high-
lights the call chain getViewSite().getActionBars().

getStatusLineManager().setMessage(msg); as shown in
Figure 1(d). The developer assesses this example as use-
ful and attempts to use it by directly copying the statement
into their method and changing the argument. Testing this
code, the developer finds that it completes the task.

This scenario describes a conceptually simple task of
updating a status line. However, even this simple task
requires knowledge about the interaction between several
types of the framework, including ViewPart, IViewSite,

IActionBars, and IStatusLineManager. This interaction is
not described in the Eclipse documentation. Although the
interactions may be discovered using the code completion
features in Eclipse, the correct sequence of calls is difficult
to find as there are 79 methods available across the four
classes.

3. RELATED WORK
Our claim in this paper is that the use of structural con-

text to match possible examples in an example repository
places fewer constraints and less of a burden on a devel-
oper than existing approaches. We focus our comparison to
related software example system efforts.

Of these systems, Strathcona most resembles the Code-
Broker system [14, 13]. CodeBroker queries a repository au-
tomatically after each comment or method signature writ-
ten by a developer. The queries made to the repository
are based on these comments and method signatures. To
retrieve matches, a developer must write comments that ex-
plain the functionality of the software in terms similar to
that of the repository code [14]. When a developer follows
this process, CodeBroker may be able to match a more di-
verse set of examples than Strathcona. However, the ef-
fectiveness of this approach may be limited by the need to

2Although this snippet does not compile, our system can
tolerate incomplete fragments (Section 4.2). In general, to
use Strathcona, a developer need not write special code to
serve as a query; the tool is designed to work from the code
a developer has written simply as part of their task.

Figure 1: Strathcona Cycle

and difficulty of writing appropriate comments. In compari-
son, our approach can apply to any code and any framework
irrespective of coding conventions since all source code in-
corporates structure.

The CodeFinder system represents another point in the
design space of software example systems by attempting to
help developers construct useful queries [3]. The developer
formulates a simple text query, executes the query, and is
then presented with a list of terms in the repository that are
similar to those in the query. Depending on the terms and
options selected by the developer, a different set of restric-
tions is presented to help narrow the search space to a spe-
cific class of examples of interest. In contrast to CodeFinder,
Strathcona aims to remove the step of formulating the query
by creating the query automatically.

Other tools, such as Component Rank [6] and

CodeWeb [8, 9], use software structure to determine which
parts of a framework are frequently used. Of these tools,
CodeWeb is the most similar as it provides information
about which classes and methods are frequently used in a
framework and how they are used. To provide this informa-
tion, a developer must populate CodeWeb with applications
that are similar to the one which they are developing. Al-
though the intent of CodeWeb is similar to Strathcona, it
differs in three ways. First, a developer must find similar
applications of interest in advance. Second, the structural
attributes are used to compare complete projects against
one another, instead of enabling the use of fragments of
projects. Third, the need to find applications in advance
suggests that a developer would be more likely to engage in
the use of CodeWeb at the beginning of the development
process as it is based on browsing rather than querying.

The Reuse View Matcher (RVM) provides a set of views
describing how an application makes use of a particular class
in a framework [12]. This technique relies exclusively on
hand-crafted examples which can be time-consuming to cre-
ate, can be out-of-date with the code, and may not have
coverage of all of the classes in the system.

The Automatic Method Completion technique [4] uses
machine learning techniques to complete a method body
based upon the developer’s current context. The approach
represents the programming language constructs and named
identifiers used in the method as a multi-dimensional vec-
tor. This vector is compared to pre-computed vectors for
example code on a server, and the best completion for the
method of interest is returned. Strathcona differs in return-
ing multiple possible examples for arbitrary blocks of code
based on structurally similar features.

The Hipikat tool [2] can recommend relevant development
artifacts from a project’s history to a developer. One kind
of artifact that can be recommended is the source revisions
associated with a past change task; these revisions can be
considered as an example. Strathcona extends the kinds
of examples that can be recommended to a developer by
drawing the examples from current uses of a framework,
rather than relying solely on the past development history
of the framework itself.

4. Strathcona
We describe the implementation of our Strathcona tool in

terms of the workflow of a developer using the tool. The
process by which the repository is initially populated is de-
scribed in Section 4.1. When a developer requests exam-
ples, a structural context description is generated from the
information in the development environment, and is sent to
the server (Section 4.2). Upon receipt of the description,
the server, according to a set of heuristics, performs queries
on the repository that attempt to match the structure de-
scribed in the query to the structure of the code stored in
the repository (Section 4.3). Examples that include code
snippets with the best structural matches to the context are
returned for perusal, and hopefully use, by the developer
(Section 4.5). We conclude the section with a discussion of
a performance of Strathcona (Section 4.6).

4.1 Server: Populate Repository
Before the client portion of the tool can be used, the

repository, which resides on the server, must be populated
with code that uses the framework and from which exam-
ples may be selected. A repository manager loads the code
into Strathcona using an Eclipse plug-in that extracts the
structural information of interest from the code and stores
it in the repository database. The repository consists of a
relational database that stores the structure of the code: the
classes, methods, fields, inheritance relation between classes,
the types instantiated by the code, and the calls between the
types. There are two restrictions placed on the code used
to populate the repository: the code must be parseable by
the Eclipse compiler, and the code should represent good
usage of the framework. The code may be from multiple ap-
plications; portions of applications may also be loaded into
the repository. The examples returned by Strathcona are
subsets of the code provided to the repository.

4.2 Client: Determining Structural Context
Strathcona relies entirely on the structure of the code be-

ing edited by the developer to form a query to the server.
The developer requests explicitly examples for a class (C),
a method (m), or a field declaration (f). Strathcona parses
the source file containing the structural element (C, m or
f) and extracts: the (containing) class, the parent class and
interfaces of C, the types of fields in C, and calls from m (if
m is the requesting target). The precise information used
in the query depends on the type of the query; for example
the calls from m are only extracted if m is queried.3 The
context extractor uses the Eclipse Java parser, which can tol-
erate several kinds of programmatic errors. Once extracted,
Strathcona forwards the structural context description to
the server.

4.3 Server: Matching Structure
When a query containing the structural context descrip-

tion arrives at the server, the server attempts to find struc-
turally similar code in the repository. Strathcona does not
attempt to match the structure exactly as this would imply
that the precise problem facing the developer, as expressed
in application-specific types, exists in the repository. In-
stead, Strathcona uses a set of heuristics to find relevant
parts of the applications to return as examples.

4.4 Structure Matching Heuristics
Strathcona incorporates six heuristics to match a struc-

tural context description to the code stored in the repository.
Each heuristic relies on different kinds of structural infor-
mation, and each produces potentially different examples.
When a request arrives at the server, all of the heuristics
are used to generate examples, and the ten “best” examples
are then chosen to be returned to the developer.4 Currently,
Strathcona defines the “best” examples as those that occur
most frequently in the set generated from applying all of the
heuristics.5

We iteratively developed the six heuristics using the
source code of several existing third-party plug-ins written
for the Eclipse framework. We posited a heuristic, took the
source code for the existing plug-ins, deleted sections that
used the Eclipse framework, and tested the heuristic to see
if any of the returned results would have helped to fill in the
code that we had deleted. Through this process, we refined
the heuristics to be as simple as possible. We describe each
of these heuristics below and discuss why we chose them in
Section 6.4.

4.4.1 Inheritance Heuristic
This heuristic matches on the parents and types of fields

of C. Strathcona queries the repository to determine the set
of classes Cr, that have the same direct parents (superclasses
and interfaces) as C. Strathcona then orders the classes in
Cr by the number of matching parents. When two or more
classes in Cr match the same number of parents, we query

3We ignore any calls or references to the Java library be-
cause including these calls shifts the focus away from the
framework of interest.
4Not every heuristic applies for each request. For example,
the calls and uses heuristics do not match any examples
when there are not any methods declared in the context.
5Each heuristic returns its top 20 examples and from these
six sets of 20 the “best” are selected

the repository to determine how many of the types of fields
in C match the types of fields in the classes from Cr and
order the results based on which examples match the most
field types. This heuristic was developed for situations when
the developer knows which hot spot [7] in the framework to
extend or implement, but does not know how to use the
hot spot. This heuristic does not rely on any method-level
context information.

4.4.2 Calls Heuristics
The call heuristics are based on the targets of the calls

made from m. In comparison to the inheritance heuris-
tic, the developer must provide more information about how
they intend to use the framework. There are three calls
heuristics.

1. The basic calls heuristic returns methods in the
repository, the set Mr, that call the same targets as m.
To match, a call target must match in both type and
method name; we do not consider the inheritance hier-
archy in matching call targets. The returned methods
are ordered by the number of matched call targets.

This heuristic sometimes returns large methods that
make a number of calls, many of which are not rele-
vant. These large methods are not useful to the de-
veloper as it is difficult to extract the portion of the
method of interest. This led to the development of the
Calls Best Fit heuristic.

2. The calls best fit heuristic selects from Mr meth-
ods with the best ratio of matched to unmatched call
targets. This heuristic returns methods only where
the ratio of matched to total number of call targets
is greater than a threshold (currently 0.4) that we de-
vised through trial and error.

3. The calls with inheritance heuristic uses more in-
formation about the context of m to select potentially
useful methods from Mr. The methods this heuristic
selects from Mr are those whose containing class share
at least one parent with C.

4.4.3 Uses Heuristics
The uses heuristics are based on the types a developer

declares and uses in a method. These heuristics do not re-
quire the developer to know specific call targets. There are
two uses heuristics.

1. The basic uses heuristic determines the types of the
objects referred to by m and finds the set of methods
Ur that use the same types. The methods in Ur are or-
dered by the most number of matches. This heuristic is
effective in two cases: when the developer knows which
type contains methods of interest (as in the scenario
in Section 2), and when the developer has stumbled
across the right type, but is using it incorrectly. The
Uses heuristic frequently returns large sets of exam-
ples and should not be considered unless other heuris-
tics also match examples or the other heuristics do not
match any examples at all.

2. The uses with inheritance heuristic applies more
information about the context of m (similar to the
calls with inheritance heuristic) to select poten-
tially useful methods from Ur. The methods selected

by this heuristic from Ur are those whose containing
class share at least one parent with C.

4.5 Example Presentation
After the heuristics locate related code in the reposi-

tory Strathcona transforms the code into examples. Strath-
cona determines how each class returned by a heuristic is
related to the structural context of the client and builds a
structural description of its use from its collaborating classes
and interfaces. This structural description, the code for the
class, and the rationale for its selection form the example
returned to the client. On the client, the structural descrip-
tion is presented to the user using a limited UML-like class
diagram notation (Figures 1(a), 3). This notation presents
the classes and interfaces the code extends or implements,
and any methods that call or use types of interest. The view
does not include any call or usage relationships between the
types. When a user requests the rationale for an example,
it is presented as a list where each entry includes one of the
four reasons for the inclusion of a particular element in the
example: class has parent of type, class has field of type,
method calls method, or method uses type. The code for
the focus class of the example can be viewed so that the
developer can investigate relevant portions.

The developer can navigate the returned examples using
next and previous buttons. On the status line, Strathcona
shows how many times an example has been viewed, and
whether or not the developer has viewed the example previ-
ously.

4.6 Performance
To support our evaluation of Strathcona and to pro-

vide initial experience with its scalability, we populated the
repository with the source for all of the Eclipse integrated
development environment (Eclipse 3.0 M8). Table 1 sum-
marizes the amount of information in the repository.

Table 1: Number of Structural Relations
Classes 17,456
Methods 124,359
Fields 48,441
Inheritance Relations 15,187
Object Instantions 43,923
Calls Relations 1,066,838
Total 1,316,204

Even with our unoptimized prototype, our approach is
scaling well. Building a structural context description is
fast, typically taking less than 500ms. Displaying the re-
turned examples is also fast, taking less than 300ms. The
average response time for our server6 on a variety of differ-
ent example requests is between 4 and 12 seconds. We feel
that this is a reasonable delay for developers who are stuck.
However, a faster response time would likely aid adoption of
the system. Currently, Strathcona runs all of the heuristics
on each developer request and combines the results. Further
analysis may allow us to determine a priori which heuristics

6The server processing the queries was a Pentium 3 800 MHz
machine with 1024 MB RAM, and the workstation housing
the database was a Pentium 3 1000 MHz machine with 256
MB RAM. Strathcona uses the Postgresql database server
to manage the structural database.

would be most effective, allowing us to increase the efficiency
of access to the database.

5. EVALUATION
Earlier in the paper, we argued qualitatively that our ap-

proach requires less effort on the part of a developer to set-up
and query an example repository than existing techniques.
However, the overall question remains of whether our struc-
tural matching heuristics can produce examples that are
helpful to a developer. To evaluate this question, we per-
formed a case study in which we asked two developers to
complete four programming tasks that use separate parts of
the Eclipse framework: three of these tasks came from our
experience developing Strathcona.

5.1 Setup
Two developers (subjects) were asked to complete four

programming tasks, each related to building a plug-in using
the Eclipse framework. Each of the developers had some
plug-in programming experience. Subject 1 had less than
one month of Eclipse plug-in programming experience but
more than eight years of Java experience. Subject 2 had
over six months of Eclipse plug-in programming experience
but only eighteen months of experience with Java.

For each task, the subjects were provided a simple descrip-
tion of the task, and a method skeleton within which they
could develop their solution. The skeletons were populated
with code the developer would likely write to accomplish
their task. The code consisted of method calls on types and
references to methods on interfaces. These methods and
types were identified using the Eclipse documentation and
code completion features.

Neither subject knew how to implement any of the as-
signed tasks. The standard Eclipse Java development tools
were available to the subjects as they worked on each task.
The tasks were completed in the same order by each subject.
A short one page document describing how to use Strath-
cona and the four tasks assigned was presented to each sub-
ject at the start of the exercise. Each subject was given a
maximum of three hours to complete the four tasks.

5.2 Results
Table 2 summarizes the results. For each task, we list

how many of the ten examples returned by Strathcona the
two subjects deemed useful for the task through their direct
use of code snippets, the number of examples for which the
subjects viewed the source, and whether or not the subject
was successful at completing the task. For each task there
may have been additional relevant examples but we indicate
only the ones that were used by the subjects.

5.2.1 Task 1: Update Status Line
The first task involved displaying text in the status line of

Eclipse as described in Section 2. This task is conceptually
simple, but requires a chain of method calls accessing ob-
jects of a variety of types, including IViewPart, IViewSite,
IActionBars and IStatusLineManager. The subjects were
given the same skeleton code as described in Section 2. Each
subject found the first example returned useful to complete
the task. Both subjects copied code from the example into
their editor, changed the variable name for the setMessage

method and ran the code to test it. The example used was
returned by all but the basic uses heuristic.

5.2.2 Task 2: Create AST
This task involved building an Abstract Syntax Tree

(AST) from a source string. A search of the Eclipse doc-
umentation indicated that ASTParser.setSource(String)

should provide the appropriate functionality. However,
three things are required: a factory is needed to create
the parser, the parser needs to have access to the appropri-
ate source code, and the AST needs to be generated. The
provided skeleton code is shown in Figure 2(a). Both sub-
jects again selected the first example returned (Figure 3)
as it demonstrated the use of the method of interest and
included code to setup the parser and create the AST (Fig-
ure 2(b)). The example they selected was returned by the
calls, calls best fit, and the uses heuristics. The sec-
ond subject investigated the code snippets for a number of
examples before deciding that the first one was the most
relevant to the task. As for the first task, both subjects
integrated code from the example into their source to com-
plete the task. The code snippet provided with the example
contained two extraneous calls that the subjects dealt with
differently; one copied all of the code and deleted the ex-
traneous sections in his code while the other subject only
copied the sections of code which were relevant (this subject
studied the documentation for each method call in the code
snippet to figure out what it did before it was copied).

a) private void createASTFromSource(String source) {
ASTParser.setSource(source.toCharArray());

}

b) private CompilationUnit parseCompilationUnit(char[]
source, String unitName, IJavaProject project) {

ASTParser parser= ASTParser.newParser(AST.LEVEL_2_0);
parser.setSource(source);
parser.setUnitName(unitName);
parser.setProject(project);
parser.setResolveBindings(true);
return (CompilationUnit) parser.createAST(null);

}

Figure 2: Task 2 Seed(a), Snippet(b)

Figure 3: Task 2 UML Representation

Table 2: Results from Evaluation
Useful Example Source Viewed Succeeded at Task

Task 1
Subject 1 1 1 yes
Subject 2 1 1 yes
Task 2
Subject 1 1 2 yes
Subject 2 1 6 yes
Task 3
Subject 1 0 2 yes
Subject 2 0 6 yes
Task 4
Subject 1 1 2 yes
Subject 2 0 7 partially

5.2.3 Task 3: Highlight Text
This task involved highlighting instances of method invo-

cations in a code viewer using the backend AST represen-
tation generated in the second task. Strathcona was not
able to return any useful examples for this task. We de-
liberately included this task to determine if subjects could
identify when the returned examples were insufficient. If the
subjects are able to recognize unhelpful examples, we have
more confidence in their assessment of returned examples.

private void hilightRegions(Vector regions) {
StyleRange[] srs = new StyleRange[regions.size()];

aViewer.getTextWidget().setStyleRanges(srs);
}

Figure 4: Task 3 Seed

Figure 4 shows the skeleton code for this task. The sub-
jects both stopped examining the examples provided within
15 minutes and implemented the feature using the standard
IDE tools. Interestingly, both subjects independently de-
cided to use Strathcona as part of this task to find an ex-
ample of how to create a SWT Color object; both subjects
used some code from the returned examples to accomplish
this portion of the task.

5.2.4 Task 4: Generate Method Signature
This task was the most complex. Using the

ASTVisitor, the subjects were asked to extract the
method signatures for each method in the AST. This
task required the use of several Eclipse framework
types including Type, PrimitiveType, ArrayType,

Name, SimpleName, QualifiedName, Code, Flags, and

SingleVariableDeclaration. Figure 5 shows some of
the most obvious method calls on MethodDeclaration

that would be needed to complete the task. Subject 1
investigated MethodDeclaration using the Eclipse code
completion feature to try to derive a working solution
before using Strathcona as he was concerned about not
finding a relevant example as was the case in task 3.
Once he queried Strathcona, he examined the rationale
for the first few of the examples carefully before deciding
which two examples to investigate. The first two examples
returned for this task match four method calls in the code
used to query; the remaining examples matched at most
two method calls. After investigating the source from the
second example, the subject discarded it and moved on

to the first example. This example matched several calls
as shown by its rationale for selection (Table 3). When
viewing the code, this example had one 56 line method
highlighted; this method also used several private utility
methods that totaled 61 lines of code. He proceeded to copy
code from the example in small sections, and completed
the task successfully. The example he selected to complete
the task was returned by all but the basic uses heuristic.
Subject two mistakenly queried the repository on the wrong
method and searched through several irrelevant source files
before deciding to implement the feature manually. She was
partially successful but was unable to extract some parts of
the signature from the AST.

public boolean visit(MethodDeclaration node) {
node.getModifiers();
node.getName().getIdentifier();
node.parameters();

return super.visit(node);
}

Figure 5: Task 4 Seed

5.3 Summary
Subject one completed all four tasks successfully, finding

relevant examples in all three cases for which appropriate
examples were returned; subject two completed three out of
four tasks, finding relevant examples in two of the possible
three cases. In each of the tasks where the subject found a
relevant example, source code was copied from the example
into the task code. These results show that our tool can de-
liver relevant and useful examples to developers. They also
show a developer can determine when the examples returned
are not relevant.

By focusing on a pre-existing framework, by considering
cases that have occurred in our own experience, and by using
subjects with some but not extensive knowledge of Eclipse,
we have focused on the realistic use of a large framework.
Since our heuristics rely on structural relationships avail-
able in most popular object-oriented languages, we believe
that our results will generalize to other frameworks written
in other languages. However, further testing is required to
determine the applicability of our heuristics to other frame-
works and to users more experienced with the framework of
interest.

Table 3: Task 4 Rationale
Class has parent of type org.eclipse.jdt.core.dom.ASTVisitor
Method Calls Target Method org.eclipse.jdt.core.dom.MethodDeclaration.getName()
Method Calls Target Method org.eclipse.jdt.core.dom.MethodDeclaration.parameters()
Method Calls Target Method org.eclipse.jdt.core.dom.SimpleName.getIdentifier()
Method Calls Target Method org.eclipse.jdt.core.dom.BodyDeclaration.getModifiers()
Class uses Class org.eclipse.jdt.core.dom.MethodDeclaration
Class uses Class org.eclipse.jdt.core.dom.SimpleName
Class uses Class org.eclipse.jdt.core.dom.BodyDeclaration

6. DISCUSSION
We have shown that Strathcona can return relevant code

examples to developers using a framework, and that devel-
opers can recognize the relevant examples. In this section,
we discuss possible pitfalls and limitations of our approach,
describe heuristics that we did not find useful, and consider
the broader applicability of the approach.

6.1 Examples: Good or Bad?
It may be that the provision of examples to a developer

leads to worse code than when examples are not provided.
Rosson and Carroll showed, in a study of developers us-
ing a Smalltalk framework [12], that developers frequently
copied and integrated snippets of code without trying to
understand exactly how they worked and executed the re-
sultant code to see the effects of the snippets. Rosson and
Carroll call this debugging into existence. The developers
in our study behaved analogously. As noted by Rosson and
Carroll, one potential problem with this strategy is that be-
cause simple examples require the least analysis, developers
may not have a firm grasp of the different contexts in which
a snippet can be used. By returning multiple examples and
the rationale for their selection, we hope to alleviate this
potential problem and provide the developer with examples
for multiple contexts.

Providing examples does have some positive benefits. The
use of examples can reduce the amount of typing required to
complete a task, or ensure that the details of the code are
correct [12]. Anecdotally, we observed that in some cases
the presence of an example meant that the code developed
was more complete than if it had been written from scratch.
For instance, during the fourth task, the developer who suc-
cessfully completed the assignment, copied some code that
checked for array types and added the appropriate notations
to the method signatures without knowing what the code
did, resulting in a case being taken into account that the
developer had not considered. By leveraging the work done
by other developers in the past, this developer was able to
complete the task with higher quality than if the developer
had been working alone.

6.2 Heuristic Performance
To date, our focus has been on the utility of our overall

approach: whether structural similarity can be used to re-
turn useful examples. In a pilot to the study reported in
Section 5, we attempted a more quantitative evaluation of
the performance of our heuristics. In the pilot, we asked a
developer to rate the examples returned by Strathcona for
the four tasks. We found that the developer was unable
to provide such a rating because the developer could not
assess the value of an example until trying to use it to com-

plete the task [5]. However, completing the task with one
example made it impossible to rate the next example given
the information learned from completing the task. It may be
possible to study the quantitative performance of the heuris-
tics through a larger study in which developers are provided
examples from only one kind of heuristic for the same set
of tasks; the value of the examples might then be assessed
across the set of developers. We have left this more subtle
experimentation for future work.

6.3 Missing Examples
We devised our study to include a case in which our tool

could not find a useful example in the repository. Choosing
to use a large framework for experimentation makes it im-
possible for us to know if a suitable example exists within the
repository that our heuristics were unable to find, although
manual searches of the repository also failed to find any
relevant examples. Further use of the tool is needed to de-
termine if our heuristics need to be augmented, or combined
with other techniques, to improve the finding of examples.

The ability of Strathcona to return useful examples is also
dependent upon the quality of the seed code used in a query.
If a developer does not have any idea of how to achieve a
desired effect with a framework and as such cannot find a
seed, or if the developer is on the wrong track and the seed
code is incorrect, Strathcona will likely not provide relevant
examples. In most cases, we have found it possible to use the
documentation to find an appropriate seed. Strathcona fills
in the details of how to complete a task that the documen-
tation lacks.

6.4 Heuristic Refinement
We developed the heuristics embedded in Strathcona it-

eratively as described in Section 4. The final version of the
heuristics in Strathcona do not include a number of the ap-
proaches we tried but that we did not find useful. We briefly
describe the failed approaches.

Example Scoring We tried to develop a scoring system
that would assign different values for the different kinds of
structural similarity but were unable to find an approach
that did not lose general applicability. Our scoring ap-
proaches tended to work for one style of code seed but not
others. We found that the styles of the seeds differed de-
pending on the stage of development of the code and whether
or not the developer had identified reasonable hot spots in
the framework from which to begin the task.

Object Instantiations Our heuristics do not treat ob-
ject instantiations specially; they are treated only as calls to
a constructor. We did not find that heuristics that treated
these instantiations specially were useful. One reason may
be variability in Eclipse as to whether clients or servers in-

stantiate objects. For example, whenever Factory classes
are involved the client does not instantiate objects but gets
new objects delivered to them by framework objects.

Hierarchies The heuristics do not transitively check the
object hierarchy when considering parents, uses, or calls re-
lations. In our initial investigation, we found that these
additional targets did not increase the effectiveness of our
heuristics and often created much larger, and less relevant,
examples. Exploring the inheritance hierarchy more thor-
oughly may be useful for cases in which the structural con-
text does not map directly to any examples. By not con-
sidering the call hierarchy we also potentially miss examples
that are split across method boundaries.

6.5 Presenting Examples
We chose to use a compact visual notation to present an

example to make it easier for a developer to select which ex-
amples to peruse in more detail. This visual notation places
a heavy emphasis on inheritance. This additional informa-
tion about types used and methods called, which is avail-
able in the rationale view, may also be useful in the visual
representation. The developers in our evaluation used the
visual notation we provided to discard examples but always
checked the rationale view before deciding if an example
should be examined in more detail.

The notation we chose for presenting examples, based on
a class diagram, focuses on the structural similarity to the
problem at hand. As a developer will often want to know
how the objects participating in the example interact, it may
be useful to replace or supplement this view with a visual-
ization based on UML collaboration or sequence diagrams.

7. CONCLUSION
The documentation for a framework is typically insuf-

ficient to describe all of the ways in which a framework
may be used. One way to help a developer use a frame-
work effectively may be to provide a repository of exam-
ples. Existing software example repository approaches have
two limitations: they impose a large burden on the devel-
oper when querying the repository, and building the repos-
itory requires either carefully constructed examples or well-
commented code.

The approach we describe in this paper overcomes these
limitations by locating examples in the repository based on
similarity of structure to the code a developer is writing.
Examples from the repository are generated automatically
from the matched code. Queries are easy to make in this
approach because they are formed automatically from the
structural information that must appear in the developer’s
code. For the same reason, the repository can be easily
formed automatically. A case study was used to show that
structural similarity can be used to deliver helpful examples
to developers.

This paper makes two contributions. First, it shows the
utility of structural similarity as a basis for a software exam-
ple repository. Second, it provides an initial set of heuristics
to use to determine structural similarity. Further develop-
ment of the heuristics, possibly using ideas from code clone
detection [1], and more extensive testing of the heuristics on
other frameworks, is needed.

Acknowledgments

This research was funded, in part by the CSER, IBM and
NSERC. We would like to thank the subjects who partici-
pated in our study. We would also like to thank Miryung
Kim, John Anvik and Andrew Eisenberg for their comments.

8. REFERENCES
[1] I. D. Baxter, A. Yahin, L. M. D. Moura,

M. Sant’Anna, and L. Bier. Clone detection using
abstract syntax trees. In Proc. of Int’l Conf. on Soft.
Maintenance, pages 368–377, 1998.

[2] D. Cubranic and G. C. Murphy. Hipikat:
Recommending pertinent software development
artifacts. In Proc. of the 25th Int’l Conf. on Software
Engineering, pages 408–418, 2003.

[3] S. Henninger. Retrieving software objects in an
example-based programming environment. In Proc. of
the 14th Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 251–260,
1991.

[4] R. Hill and J. Rideout. Automatic method completion.
In Proc. of the 19th IEEE Int’l Conf. on Automated
Software Engineering, pages 228–235, 2004.

[5] R. Holmes. Using structural context to recommend
source code examples. Master’s thesis, University of
British Columbia, 2004.

[6] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto,
M. Matsushita, and S. Kusumoto. Component rank:
Relative significance rank for software component
search. In Proc. of the 25th Int’l Conf. on Software
Engineering, pages 14–24, 2003.

[7] R. E. Johnson. Documenting frameworks using
patterns. In Proc. of the Conf. on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA), pages 63–72, 1992.

[8] A. Michail. Data mining library reuse patterns using
generalized association rules. In Proc. of the 22nd Int’l
Conf. on Software Engineering, pages 167–176, 2000.

[9] A. Michail. Code web: Data mining library reuse
patterns. In Proc. of the 23rd Int’l Conf. on Software
Engineering, pages 827–828. IEEE Computer Society,
2001.

[10] L. R. Neal. A system for example-based programming.
In Proc. of the SIGCHI Conf. on Human Factors in
Computing Systems, pages 63–68. ACM Press, 1989.

[11] E. Rissland. Examples and learning systems. In
Adaptive Control of Ill-Defined Systems. Plenum,
1983.

[12] M. B. Rosson and J. M. Carroll. The reuse of uses in
Smalltalk programming. ACM Transactions on
Computer-Human Interaction, 3(3):219–253, 1996.

[13] Y. Ye and G. Fischer. Supporting reuse by delivering
task-relevant and personalized information. In Proc. of
the 24th Int’l Conf. on Software Engineering, pages
513–523, 2002.

[14] Y. Ye, G. Fischer, and B. Reeves. Integrating active
information delivery and reuse repository systems. In
Foundations of Software Engineering, pages 60–68,
2000.

